

Physics reach of future ECN3 experiments: General considerations and preliminary results

Felix Kahlhoefer Physics Beyond Colliders Annual Workshop, 7-9 November 2022

Two challenges for studying physics reach

Aim: Enable experiments to present their science case in a robust and balanced way that allows for external assessment

- Part 1: Towards fair sensitivity comparisons
 - Example: Sensitivity to light and long-lived dark scalars in beam dumps

- Part 2: Towards fair interpretation
 - Example: Sensitivity to lepton flavour universality violation in kaon decays

- Step 1: Define benchmark scenarios
 - For feebly-interacting particles: Set of 11 benchmark scenarios agreed upon by PBC experiments
 - → New BCs under development
 - For heavy new physics:

 Natural framework is Effective
 Field Theory, but need to focus
 on specific (sets of) operators

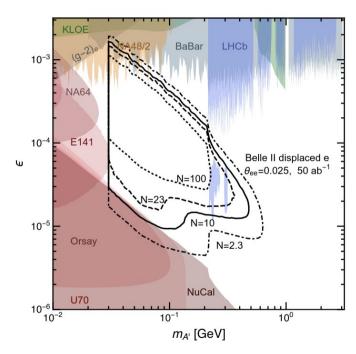
- 9.1 Vector Portal
 - 9.1.1 Minimal Dark Photon model (BC1)
 - 9.1.2 Dark Photon decaying to invisible final states (BC2)
 - 9.1.3 Milli-charged particles (BC3)
- 9.2 Scalar Portal
 - 9.2.1 Dark scalar mixing with the Higgs (BC4 and BC5)
- 9.3 Neutrino Portal
 - 9.3.1 Neutrino portal with electron-flavor dominance (BC6)
 - 9.3.2 Neutrino portal with muon-flavor dominance (BC7)
 - 9.3.3 Neutrino portal with tau-flavor dominance (BC8)
- 9.4 Axion Portal
 - 9.4.1 Axion portal with photon-coupling (BC9)
 - 9.4.2 Axion portal with fermion-coupling (BC10)
 - 9.4.3 Axion portal with gluon-coupling (BC11)

- Step 2: Agree on signal simulation
 - Example: FIPs produced in B meson decays
 - All experiments should use the same B meson spectra (obtained e.g. from Pythia 8)
 - All experiments should use the same cross sections for proton-proton scattering and bb production
 - Ideally, codes used to simulate subsequent FIPs decays (e.g. three-body decays of HNLs) should be made publicly available

WORK IN PROGRESS

07/11/22

- Step 3: Clearly state assumptions & level of sophistication
 - Assumed data set (integrated luminosity, POT, ...) and corresponding timescales
 - Detector simulation (fast/full, assumed resolution, acceptances, ...)
 - Background study (simulated, extrapolated from data, ...)

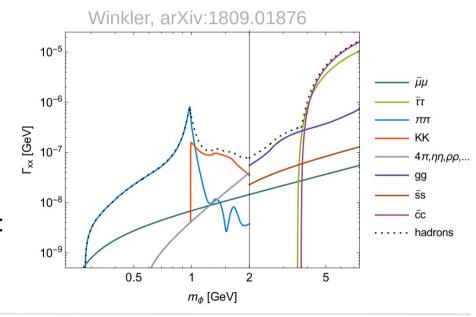

- Goals:
 - Store sensitivity projections together with documentation in central repository
 - Graphically represent maturity level using different line styles in summary plots

- What about experiments that are not part of PBC?
 - Many groups worldwide adopt PBC conventions and benchmarks
 - New proposals often have low level of sophistication (detector simulation and background estimates are very challenging and time-consuming)
 - Vastly varying timescales and level of realism
 - Need to decide which experiments to include on case-by-case basis

- Possible solution: Three types of plots
 - Contour plot of predicted new-physics events
 - No background estimates needed
 - Standard sensitivity projections (90% CL)
 - Requires estimate of background rate
 - Plot of discovery potential
 - Requires estimate of background uncertainty

Ferber et al., arXiv:2202.03452

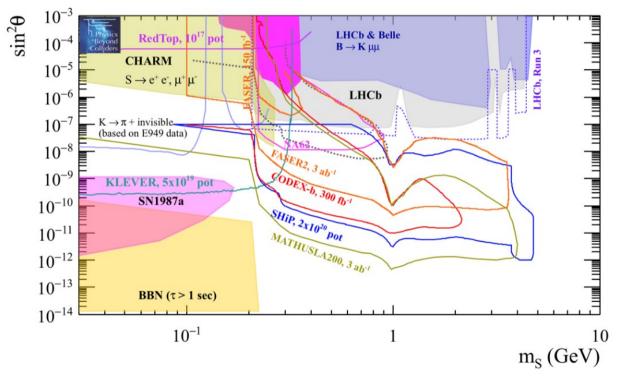
Benchmark model: Light dark scalars



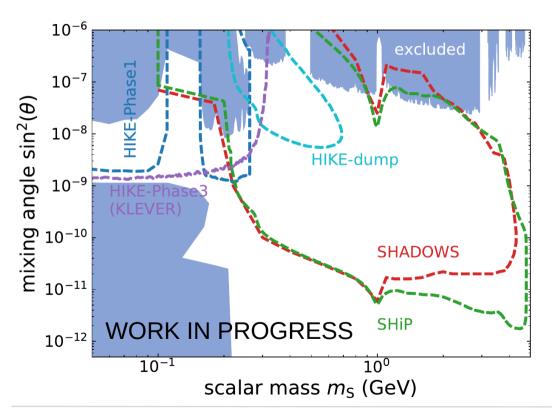
$$\mathcal{L}_{\text{scalar}} = \mathcal{L}_{\text{SM}} + \mathcal{L}_{\text{DS}} - (\mu S + \lambda S^2) H^{\dagger} H.$$

- Simplest version (BC4): $\lambda = 0$, $\mu \neq 0$
 - → Mixing with SM Higgs boson

$$\theta = \frac{\mu v}{m_h^2 - m_S^2}$$


- Production through rare meson decays: $B \rightarrow K + S, K \rightarrow \pi + S$
- Various different decay modes

Sensitivity projections (2019)



Beacham et al., arXiv:1901.09966

Sensitivity projections (ECN3)

- HIKE-Phase1: K⁺ → π⁺ + S (40x NA62 Run1 2016-2018)
- HIKE-Phase3: $K_L \rightarrow \pi^0 + S$ (assume 60 events in $K \rightarrow \pi \nu \nu$)
- HIKE-dump: 5*10¹9 POT (no background)
- SHADOWS: 5*10¹⁹ POT (no background)
- SHiP: 2*10²⁰ POT (no background)

Towards fair interpretation

- In many cases different experiments achieve best sensitivity for different benchmarks
 - SHADOWS much better than HIKE (in dump mode) for FIPs produced in B meson decays (BC4, BC6-8, BC10)
 - SHADOWS looses sensitivity for FIPs produced in the forward direction (BC1, BC9, BC11)
 - Only SHiP (with scattering detector) is sensitive to invisibly decaying dark photons (BC2)
- No well-defined method to compare size of different parameter regions
- Certainly no way of comparing relative merit of different BCs
- Even less clear how to compare searches for light new particles to kaon decays

Towards fair interpretation

- Possible strategy: How much knowledge can be gained by each experiment?
- Given existing exclusions, how strong a signal can be expected?
- How much could be learned from such a signal in terms of underlying models?
 - Reconstruction of particle mass and branching ratios
 - Discrimination between models?
- Would a null result imply any qualitative changes in our understanding?

Heavy new physics in K decays

HIKE will not only improve measurement of **BR(K**⁺ \rightarrow π ⁺ $\nu\nu$) but also measure **BR(K**_L \rightarrow π ⁰ $\nu\nu$), **BR(K**_L \rightarrow μ ⁺ μ -), **BR(K**_L \rightarrow π ⁰ μ ⁺ μ -) and **BR(K**_L \rightarrow π ⁰**e**⁺**e**-)

- Given existing constraints on these decays, can we hope for new physics to be revealed with statistical significance?
- Answer requires combination of different decay modes, which relies on model-specific assumptions
- Of particular interest: Lepton flavour universality violation
 - \rightarrow BR(K+ \rightarrow π +e+e-)/BR(K+ \rightarrow π + μ + μ -) and BR(K+ \rightarrow e+ ν)/BR(K+ \rightarrow μ + ν)

EFT for lepton flavour universality violation

$$\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} \lambda_t^{sd} \frac{\alpha_e}{4\pi} \sum_k C_k^{\ell} O_k^{\ell}$$

- Many different possible Lorentz structures
- Focus on those of particular interest for B physics:

$$O_9^{\ell} = (\bar{s}\gamma_{\mu}P_Ld)(\bar{\ell}\gamma^{\mu}\ell), \qquad O_{10}^{\ell} = (\bar{s}\gamma_{\mu}P_Ld)(\bar{\ell}\gamma^{\mu}\gamma_5\ell)$$

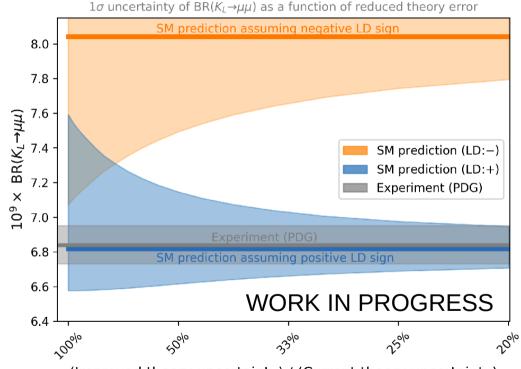
Additional assumptions: $\delta C_L^\ell \equiv \delta C_9^\ell = -\delta C_{10}^\ell$ (only left-handed) $\delta C_L^ au = \delta C_L^\mu$ (reduce dimensions)

Three steps towards a global picture

- Obtain current best-fit point by fitting all available data
- Shrink error bars according to expected improvements
- Quantify deviation from the Standard Model

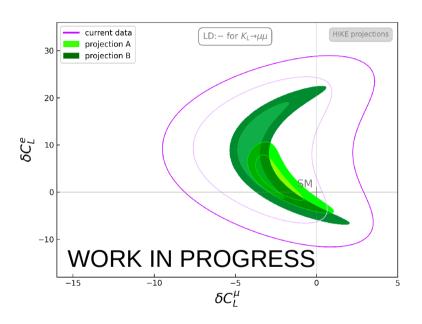
Observable	SM prediction	Exp results	Ref.	Experimental Err. Projections
$BR(K^+ \to \pi^+ \nu \nu)$	$(7.86 \pm 0.61) \times 10^{-11}$	$(10.6^{+4.0}_{-3.5} \pm 0.9) \times 10^{-11}$	[15]	10%(@2025) 5%(CERN; long-term) [109]
${ m BR}(K_L^0 o \pi^0 u u)$	$(2.68 \pm 0.30) \times 10^{-11}$	$< 3.0 \times 10^{-9} @90\% CL$	[17]	20%(CERN; long-term [109]) 15% (KOTO [112])
$LFUV(a_+^{\mu\mu} - a_+^{ee})$	0	-0.031 ± 0.017	[16, 60]	± 0.007 (assuming ± 0.005 for each mode)
$BR(K_L \to \mu\mu) \ (+)$	$(6.82^{+0.77}_{-0.29}) \times 10^{-9}$	$(6.84 \pm 0.11) \times 10^{-9}$	[62]	experimental uncertainty kept to current value
$BR(K_L \to \mu\mu) \ (-)$	$(8.04^{+1.47}_{-0.98}) \times 10^{-9}$			
$\mathrm{BR}(K_S \to \mu\mu)$	$(5.15 \pm 1.50) \times 10^{-12}$	$< 2.1(2.4) \times 10^{-10} @90(95)\% CL$	[63]	$< 8 \times 10^{-12}$ @95% CL (CERN; long-term [77])
$BR(K_L \to \pi^0 ee)(+)$	$(3.46^{+0.92}_{-0.80}) \times 10^{-11}$	$< 28 \times 10^{-11}$ @90% CL	[107]	observation (CERN; long-term [109]) (we assume 100% error)
$BR(K_L \to \pi^0 ee)(-)$	$(1.55^{+0.60}_{-0.48}) \times 10^{-11}$			
$R(K_L \to \pi^0 \mu \mu)(+)$	$(1.38^{+0.27}_{-0.25}) \times 10^{-11}$	$< 38 \times 10^{-11}$ @90% CL	[108]	
$R(K_L \to \pi^0 \mu \mu)(-)$	$(0.94^{+0.21}_{-0.20}) \times 10^{-11}$			

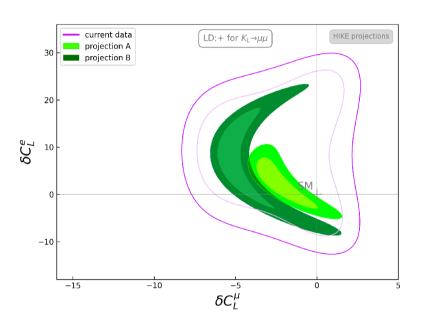
Table and analysis strategy taken from "Anatomy of kaon decays and prospects for lepton flavour universality violation" by G. D'Ambrosio, A.M. Iyer, F. Mahmoudic and S. Neshatpour, arXiv:2206.14748


Felix Kahlhoefer

07/11/22

Theoretical uncertainties

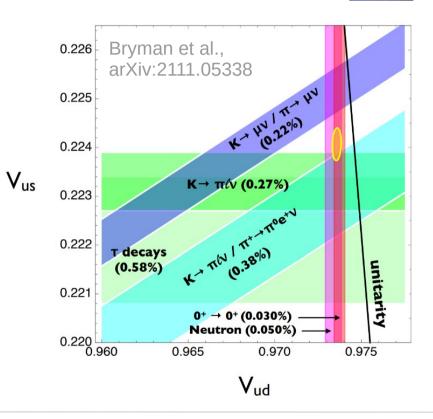

- Essential to have theoretical uncertainties under control
- Particularly challenging: $K_i \rightarrow \mu^+ \mu^-$
- Unknown sign of long-distance contribution from $K_1 \rightarrow yy$
- Mitigation strategy: Repeat fit twice for different assumptions



(Improved theory uncertainty) / (Current theory uncertainty)

Results

- Projection A: New modes agree with SM
- \blacksquare Projection B: New modes agree with best-fit point \rightarrow Clear departure from SM at 3σ
- \rightarrow Overall consistency with SM at 3 σ


Next steps

- Apply similar strategy also to fit of CKM matrix elements
- Current data hints at unitarity violation ("Cabibbo angle anomaly")

- Study international competition
 - BR($K_1 \rightarrow \pi^0 \nu \nu$) at KOTO
 - BR($K_S \rightarrow \mu^+\mu^-$) at LHCb

Conclusions

- Exciting opportunities to search for new physics beyond the Standard Model with future experiments at ECN3
- Challenge 1: Fair comparison of sensitivity projections
 - Unify model/simulation assumptions, clearly label level of maturity
- Challenge 2: Fair interpretation of physics case
 - Quantify information gain / statistical significance
- Huge discovery potential for both light and heavy new physics

19