

FIPs at Large Angle: ANUBIS, CODEX-b, and MATHUSLA

Juliette Alimena (DESY), on behalf of the ANUBIS, CODEX-b, and MATHUSLA Collaborations Physics Beyond Colliders Annual Workshop, CERN November 8, 2022

Long-Lived Particles (LLPs)

Standard model particles span a wide range of lifetimes (τ)

Long-Lived Particles (LLPs)

Standard model particles span a wide range of lifetimes (τ)

We expect **new phenomena** to have a wide range of lifetimes as well

But **conventional searches** for new phenomena at the LHC are for **promptly** decaying particles

Long-Lived Particles (LLPs)

Standard model particles span a wide range of lifetimes (τ)

We expect **new phenomena** to have a wide range of lifetimes as well

But **conventional searches** for new phenomena at the LHC are for **promptly** decaying particles

LLPs generically appear in many **BSM scenarios**

(SUSY, heavy neutral leptons, dark photons, inelastic dark matter, etc.)

Great discovery potential!

LLP Searches at ATLAS, CMS, LHCb

- Many searches at the general-purpose LHC detectors have been done, are underway, and are planned (also for HL-LHC)
- However, challenging: not really designed for LLPs
 - Dedicated triggers
 - Unique offline object reconstruction
 - Atypical backgrounds
- Big opportunity to do something different with dedicated experiments!

Transverse Detectors at the HL-LHC

Transverse detectors like ANUBIS, CODEX-b, and MATHUSLA are sensitive to uncovered regions of LLP phase space

ANUBIS, CODEX-b, and MATHUSLA

Shielded tracking volumes off-axis to the beam, and

aligned with the main LHC detectors

MATHUSLA

MAssive Timing Hodoscope for Ultra Stable neutraL pArticles

- Large area (100m x 100m x 25m decay volume) surface detector located above CMS
- Extruded scintillators + SiPMs
- Cosmic μ (1.7 MHz) and LHC μ (10 Hz) rejected with timing

- Public webpage
- Proposal (arXiv:1606.06298)
- Updated LOI (arXiv:2009.01593)
- Snowmass paper (arXiv:2203.08126)

Cosmic rays

MATHUSLA Detector Technology

- Extruded scintillator bars with wavelength shifting fibers read out by silicon photomultipliers (SiPMs)
- Transverse resolution of 1cm
- δt between ends \rightarrow longitudinal resolution of 15cm

 $2.4 \text{m} \times 3.5 \times 1.5 \text{cm}^2$ or 2.5 m with looped WSF

Six tracking layers on top. Two middle layers. Two floor layers.

Scintillator Timing Resolution

- Timing considerations:
 - Need to separate downwards from upwards going tracks
 - Need to reject low beta particles from neutrino QIS
- Therefore need ~1 ns resolution
 with > 15 photoelectrons per hit

Timing resolution of 0.54 ns with worst light yield of 29 PE well within MATHUSLA requirement

Timing measurements

for a 5 m long fiber through a $1 \times 4 \text{ cm}^2$ extrusion located at the center of the fiber

MATHUSLA Detector Layout and Plans

- Modular design for staged assembly
- 100 modules in 100 m × 100 m footprint
 - Each module has 10 planes and 4 detector units per plane
- Investigating RPC layers for cosmic ray studies, up to PeV scale
 - Linear response for higher hit rates from extensive air showers

- Constructing **detector unit prototype** at the University of Victoria (64 channels, 4 layers)
 - Goals: replicate MATHUSLA tracking environment for resolution and efficiency studies, and validation of simulation
- Conceptual Design Report in preparation

Identifying LLPs with MATHUSLA

- MATHUSLA can't measure particle momentum or energy, but:
- The track geometry can point to decay particle nature and LLP boost (<u>arXiv:1705.06327</u>)

- Also studying incorporating
 MATHUSLA into CMS L1 trigger
- Could correlate event info offline and identify the LLP production mode

ANUBIS

AN Underground Belayed In-Shaft Experiment

- Instrument ATLAS cavern ceiling and service shafts with RPC tracking stations
 - Recently converged on ceiling + shaft geometry
 - Larger active volume: $4.3 \times 10^4 \text{m}^3$
 - Larger total detector area: $\mathcal{O}(10^3 \text{m}^2)$
- ATLAS subdetectors serve as active + passive veto
- Participate in ATLAS L1 trigger decision

Detector element: two RPC triplets

- Public webpage
- Proposal (arXiv:1909.13022)

ANUBIS Projected Sensitivity

proANUBIS

 proANUBIS will be a prototype detector (1.8m x 1 m x 1 m) proANUBIS 2022: installed during Run 3

SX1 building surfa

- Formed from 6 BIS7 RPC singlets
- Performance goals:
 - Commissioning, perform hit + track efficiency measurements
 - Test track extrapolation from ATLAS
 - Use single muon trigger to identify muons and synchronize ATLAS and proANUBIS
- Physics goals:
 - Validate GEANT4 simulation
 - Measure rates of secondaries from hadrons interacting with the concrete lid (2022)
 - Measure rates of hadrons from punch-through jets (2023)

proANUBIS Assembly and First Performance

Three tracking layers

Unique Sensitivity Already for ProANUBIS

- Large time-of-flight and great timing resolution (~300 ps)
- Superb $\beta = v/c$ resolution: δ_{β} ~ 0.1%
 - ATLAS has δ_{β} ~ 2-3%
- Therefore unique sensitivity to charged massive particles with β near 1
- Maybe could shed some light on ATLAS excess in dE/dx search (arXiv:2205.06013)?

CODEX-b

COmpact Detector for EXotics at LHCb

- 10m x 10m x 10m box of **RPC tracking layers**
- Behind existing 3.2m thick shield
- Transverse to LHCb

- Located in counting room (1) or DELPHI exhibit (2)?
 - Several locations being studied
- Integration with LHCb triggerless DAQ

Backgrounds in CODEX-b

Main backgrounds:

- μ (primary or secondary) that can penetrate concrete+Pb shield
- $n/\pi^{\pm}/K^{\pm}/K_L^0$

Additional potential sources:

• LHC machine-induced, Thermal neutrons, Neutrinos

Detailed bkg simulation:

- arXiv:1708.09395, arXiv:1911.00481
- Bkg levels reduced to < \mathcal{O} (1 event) in 300 fb^{-1} with shields + active/topological vetoes
- Measured backgrounds in D1 area in 2018:
 - arXiv:1912.03846
- FLUKA campaign from CERN RP validated Pythia simulation

CODEX- β

- CODEX-β will be a prototype detector
 (2 m x 2 m x 2 m) installed during Run 3 in the D1 ground floor barrack space
- Formed from 14 BIS7 chambers
 - Triplets on each face and one internal module
 - Funding secured!
- Main goals:
 - Integrate with LHCb online
 - Reconstruct K_L^0 and measure bkg rates
 - Validate simulation

CODEX CX1 Frame

- Assembled new CX1 frame to hold one RPC triplet
 - Very precise: reduced change of RPC misalignment
 - Structural engineering report in preparation

CODEX RPC Assembly

- Currently procuring strip panels for RPC singlets
- Once singlets built, can assemble triplets, and mount to CX1 frame to form the full module
- Once one module built, full construction can occur

- Tested quality assurance of 422 readout boards over the summer
 - Documented in internal note
- Chamber assembly starting next year

Transverse Detectors: Unique Sensitivity!

Summary

- Transverse experiments will probe unique LLP parameter space,
 beyond what is accessible with forward or beam dump experiments
- Let's make sure we don't miss new physics!
- Join us!

Backup

MATHUSLA Prototype

- A few year ago: had a small test stand above ATLAS to show the proof-of-principle
- Now: constructing detector unit prototype at the University of Victoria
 - 64 channels, 4 layers

Goals:

- Replicate MATHUSLA tracking environment for resolution and efficiency studies with cosmic muons
- Provide validation of simulation

MATHUSLA Prototype

- A few year ago: had a small test stand above ATLAS to show the proof-of-principle
- Now: constructing detector unit prototype at the University of Victoria
 - 64 channels, 4 layers

Goals:

- Replicate MATHUSLA tracking environment for resolution and efficiency studies with cosmic muons
- Provide validation of simulation

