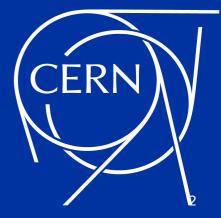

Towards an LHC test stand for crystal assisted fixed-target experiments


P. Hermes, M. Ferro-Luzzi, D. Mirarchi, K. Dewhurst, S. Redaelli

Physics Beyond Colliders Annual Workshop CERN, Geneva 08.11.2022

Acknowledgments

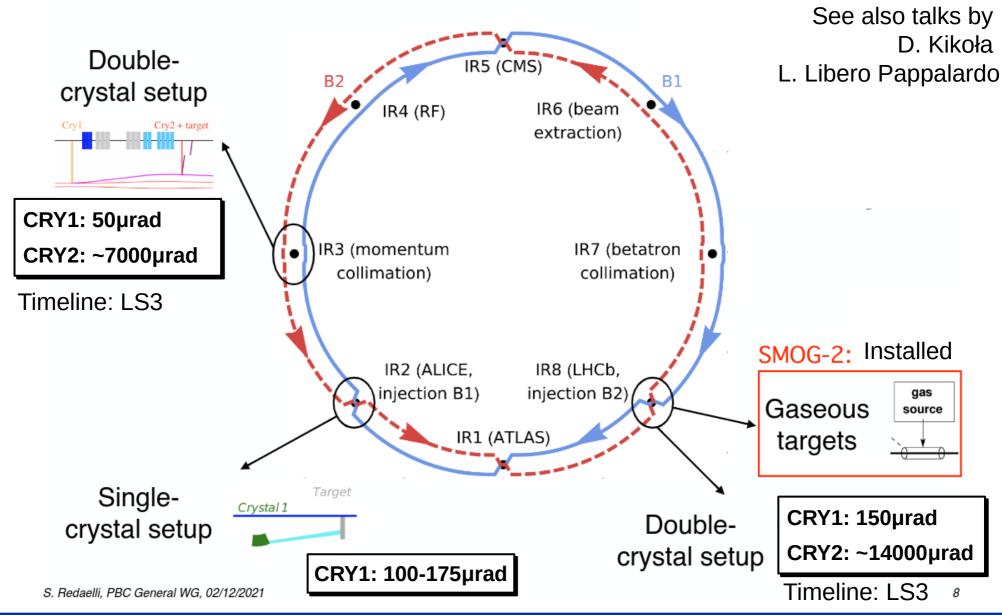
O. Aberle, S. Andres Solis Paiva, G. Arduini, R. Bruce, M. Calviani, Q. J. Demassieux, M. Di Castro, P. Fessia, A. Fomin, R. Franqueira Ximenes, F. Martinez Vidal, E. Matheson, A. Mazzolari, N. Neri, R. Seidenbinder

Towards a double-crystal test-stand in the LHC | PBC Annual Workshop '22

Introduction

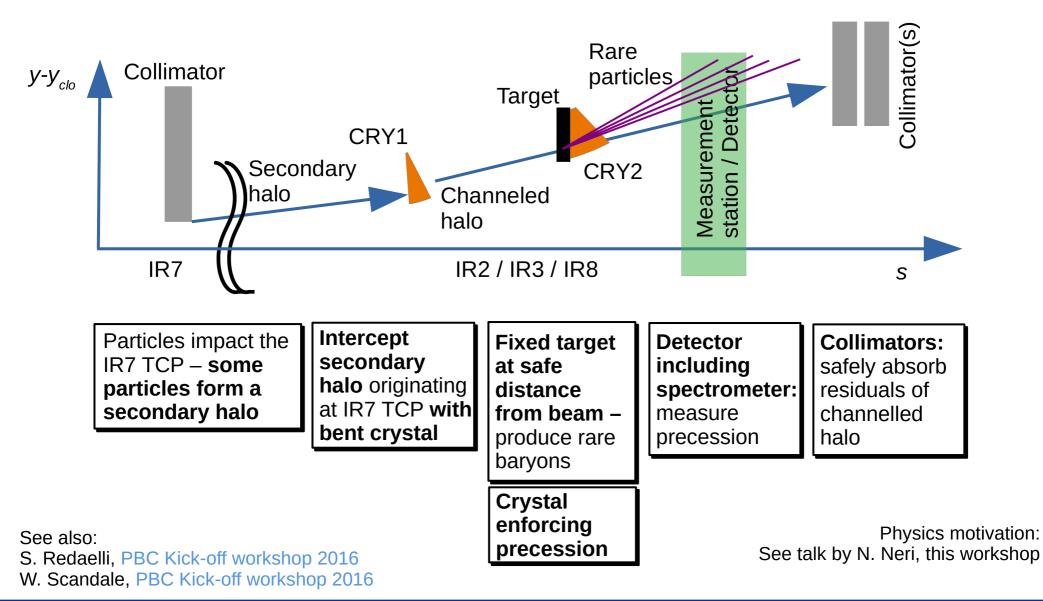
Status

Layout


Beam dynamics simulations

Outlook

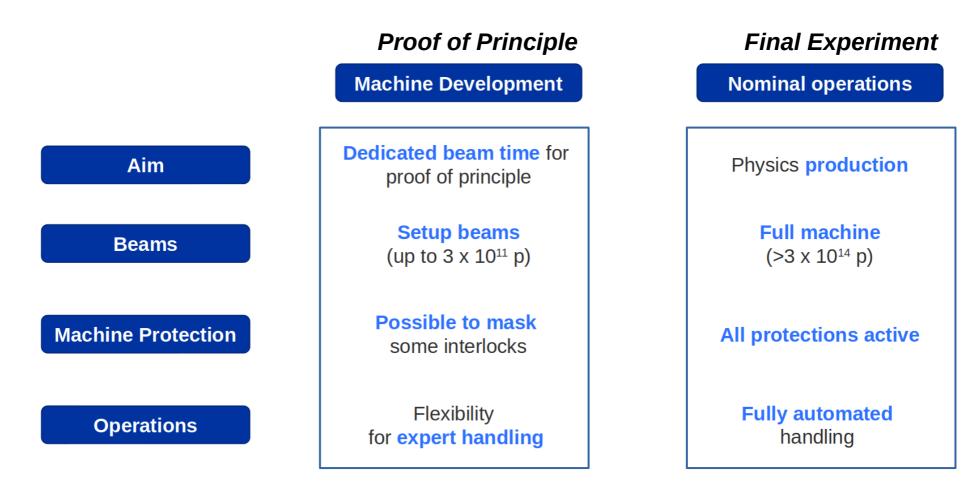
Conclusions


LHC fixed target proposals

Double crystal setup

High intensity operation

Proof of Principle (PoP)


- Double-crystal FT experiment: unprecedented experimental setup challenging combination of high precision devices
- Attempt for simplified (yet compatible with final experiment) IR3 double-crystal setup during LHC Run 3

Main Goals

- Measure achievable protons on target: so far only simulation based
- Assess performance of CRY2 in TeV range (only available at LHC)
- Gain experience / develop solutions for expected operational challenges: crystal alignment, establishing double channelling, etc.
- Performance and background environment for IR3 detector studies

Operational Scope

Courtesy of D. Mirarchi

Introduction

Status

Layout

Beam dynamics simulations

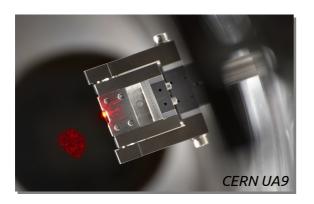
Outlook

Conclusions

Status

- Gain experience in operation and demonstrate concept feasibility in LHC Run 3 → proof of principle (PoP) setup
- 2022 PoP functional specification document approved (EDMS 2742008)
- Memorandum of Understanding – available for signature by collaborators
- Work Breakdown Structure under finalization with groups and external collaborators

LELNIN	h Physics Beyond Colliders	RE	2742008	1.0 RELEA				
FUNCTIONAL SPECIFICATION								
		NCTIONAL AND OPERATIO OUBLE-CRYSTAL SETUP IN 1						
layout was co at the LHC. T principle setu	nsidered in the fram his document descr p for a possible late	up to be possibly installed in the off-momentum nework of the Physics Beyond Collider (PBC) studie ribes the specifications of the two bent-crystal er implementation of an experiment. The double	es on fixed-tan assemblies ne	get implementations eded for a proof-of-				
the target, the dipole mome points before The new devi and TCCP res produced in conditions fo	at channels short-li nts by spin precessi a possible deploym ces for the IR3 proof pectively. The latter time. This docume	e secondary halo towards an off-axis target, and a ving charged particles, such as /k-allowing one on in the crystal. The proof-of-principle setup i ent of a dipole moment experiment. of-principle setup ar called Target Collimator Cr also includes a target, if a combined target he in describes the functional specifications for the dedicated detector for the detection of particles ument.	to measure e n IR3 is design ystal Splitting older/goniome hese devices	II, located just behind electric and magnetic ned to address open and Precession, TCCS ter assembly can be and the operational				
the target, the dipole mome points before The new devi and TCCP res produced in conditions fo	at channels short-li nts by spin precessi a possible deploym ces for the IR3 proof pectively. The latter time. This documer r LHC beam tests. A	ving charged particles, such as A _e [*] , allowing one on in the crystal. The proof-of-principle setup i ent of a dipole moment experiment. -of-principle setup are called Target Collimator Cr , also includes a target, if a combined target hen the describes the functional specifications for the dedicated detector for the detection of particle	to measure e n IR3 is design ystal Splitting older/goniome hese devices	II, located just behind electric and magnetic ned to address open and Precession, TCCS ter assembly can be and the operational				
the target, th dipole mome points before The new devi and TCCP res produced in conditions fo but it is not d	at channels short-lin hts by spin precessi a possible deploym ces for the IR3 proof. petitively. The latter time. This docume r LHC beam tests. A escribed in this docu	ving charged particles, such as A ₄ *, allowing one on in the crystal. The proof-of-principle setup i ent of a dipole moment experiment. -of-principle setup are called Target Collimator Cr also includes a target, if a combined target ha a laso includes a target, if a combined target ha t describes the functional specifications for th adeitated detector for the detection of particles ument.	to measure e n IR3 is design ystal Splitting ; older /goniome nese devices s after the TCr	II, located just behind electric and magnetic ned to address open and Precession, TCCS ter assembly can be and the operational				
the target, th dipole mome points before and TCCP res produced in conditions fo but it is not d Prepared by S. Redaelli, I	at channels short-lin hts by spin precessi a possible deploym ces for the IR3 proci pectively. The latter time. This docume rulk Deam tests. A escribed in this docu	ving charged particles, such as /4,* allowing one on in the crystal. The proof-of-principle setup i ent of a dipole moment experiment. -of-principle setup are called Target Collimator Cr ; also includes a target, if a combined target han at describes the functional specifications for th dedicated detector for the detection of particles ument. TRACEABILITY	to measure e n IR3 is design ystal Splitting Jilder/goniome hese devices s after the TCC	II, located just behind learnie and magnetic ned to address open and Precession, TCCS fer assembly can be and the operational CP is also considered				
the target, th dipole mome points before and TCCP res produced in conditions fo but it is not d Prepared by S. Redaelli, I Verified by:	at channels short-lin hts by spin precessi a possible deploym ces for the IR3 proc pectively. The latter time. This docume r. C. Demassieux, I a Seidenbinder List of technical lin	ving charged particles, such as A ₄ *, allowing one on in the crystal. The proof-of-principle setup i ent of a dipole moment experiment. -of-principle setup are called Target Collimator Cr , also includes a target, if a combined target ha t describes the functional specifications for th dedicated detector for the detection of particles ument. TRACEABILITY K. Dewhurst, A. Fomin, P. Hermes, D. Mirarch	to measure e n IR3 is design n IR3 is design ystal Splitting glider/geniome hese devices s after the TCr	II, located just behind dectric and magnetic det to address open and Precession, TCCS ter assembly can be and the operational CP is also considered Nate: 2020-07-14				
the target, th dipole mome points before produced in conditions for but it is not d Prepared by S. Redaelli, I Verified by: Approved b	at channels short-lin hts by spin precessi a possible deploym ces for the IR3 proc pectively. The latter time. This docume r C0. Demassieux, I a. Seidenbinder List of technical lin y: G. Arduini, S. Re	ving charged particles, such as A _i *, allowing one on in the crystal. The proof-of-principle setup i ent of a dipole moment experiment. -of-principle setup are called Target Collimator Cr , also includes a target, if a combined target ha t describes the functional specifications for th dedicated detector for the detection of particles ument. TRACEABILITY K. Dewhurst, A. Fomin, P. Hermes, D. Mirarch nks for first version available in EDMS 27420	to measure e n IR3 is design n IR3 is design ystal Splitting glider/geniome hese devices s after the TCr	II, located just behind dectric and magnetic det to address open and Precession, TCCS ter assembly can be and the operational CP is also considered Nate: 2020-07-14 Date: 2022-07-31				
the target, th dipole mome points before produced in conditions for but it is not d Prepared by S. Redaelli, I Verified by: Approved b	at channels short-lin hts by spin precessi a possible deploym ces for the IR3 proc pectively. The latter time. This docume r C0. Demassieux, I a Seidenbinder List of technical lin y: G. Arduini, S. Re	ving charged particles, such as A _i *, allowing one on in the crystal. The proof-of-principle setup i ent of a dipole moment experiment. -of-principle setup are called Target Collimator Cr , also includes a target, if a combined target hat dedicated detector for the detection of particles ument.	to measure e n IR3 is design n IR3 is design ystal Splitting ulder/geniome hese devices s after the TCr	II, located just behind dectric and magnetic det to address open and Precession, TCCS ter assembly can be and the operational and the operational CP is also considered Date: 2020-07-14 Nate: 2022-07-31 Nate: 2022-08-30				
the target, th dipole mome points before produced in conditions for but it is not d Prepared by S. Redaelli, I Verified by: Approved b Distribution	at channels short-lin hts by spin precessi a possible deploym ces for the IR3 proc pectively. The latter time. This docume rt IC beam tests. A escribed in this docu r? Q. Demassieux, I seddenbinder List of technical lir y: G. Arduini, S. Re ; PBC-FT working	ving charged particles, such as .4,* allowing one on in the crystal. The proof-of-principle setup i ent of a dipole moment experiment. -of-principle setup are called Target Collimator Cr , also includes a target, if a combined target hat dedicated detector for the detection of particles ument.	to measure e n IR3 is design ystal Splitting Jider/geniome hese devices s after the TCI 11, 08.	II, located just behind dectric and magnetic det to address open and Precession, TCCS ter assembly can be and the operational and the operational CP is also considered bate: 2020-07-14 bate: 2022-07-31 bate: 2022-08-30 hanges in EDMS)				
the target, th dipole mome points before The new devi and TCCP reso produced in conditions for but it is not d but it is not d Prepared by S. Redaelli, I Verified by: Approved b Distribution Rev. No.	at channels short-lin hts by spin precessi a possible deploym ces for the IR3 proci pectively. The latter time. This docume rr. Q. Demassieux, I secribed in this docu rr. Q. Demassieux, I seldenbinder List of technical lin y: G. Arduini, S. Re : PBC-FT working	ving charged particles, such as Ar, allowing one on in the crystal. The proof-of-principle setup i ent of a dipole moment experiment. -of-principle setup are called Target Collimator Cr , also includes a target, if a combined target hat dedicated detector for the detection of particles ument.	to measure e n IR3 is design ystal Splitting jider/goniome hese devices s after the TCI ni,	II, located just behind dectric and magnetic det to address open and Precession, TCCS ter assembly can be and the operational and the operational CP is also considered Date: 2020-07-14 Date: 2022-07-31 Date: 2022-08-30 hanges in EDMS) involved.				



IR3 crystal design layout parameters

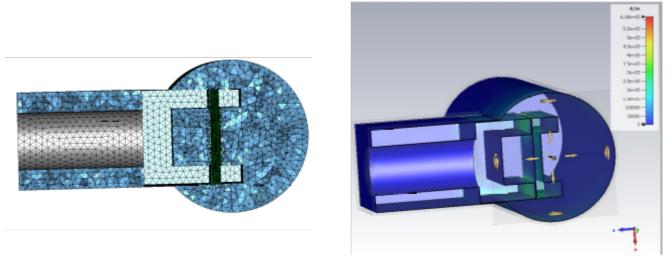
Property	Specification		
Device	TCCS (CRY1)	TCCP (CRY2)	
Material	Si	Si	
Bending angle (µrad)	50	7000	
Length (mm)	4	70	
Bending radius (m)	80	10	

TCCS: identical to
crystals already used
in LHC collimation
·

TCCP: new challenging crystal parameters - exp. characterization in TeV range needed

Layout and key devices

m] [µ	rad] radi	ling Bendi us plane	0 0	Material	Maxfield [Tm]
130 5	50 80) 110	0.4	Si	
74.5			0.5	W^{\dagger}	
74.5 70	000 10) 110	7.0	Si ⁺⁺	
74.9			170		1.87
55.7			100	W	
	130 5 74.5	430 50 80 74.5 74.5 7000 10 74.9	430 50 80 110 74.5 74.5 7000 10 110 74.9	430 50 80 110 0.4 74.5 0.5 74.5 7000 10 110 7.0 74.9 170	430 50 80 110 0.4 Si 74.5 0.5 W ⁺ 74.5 7000 10 110 7.0 Si ⁺⁺ 74.9 170 170


Existing

More details later in the talk

Technological challenges

- Example goniometer with new constraints compared to existing TCPC assembly (selection):
 - Accommodate heavier CRY2
 - Impedance: HL-LHC proton intensity compatibility
 - Ongoing effort for new technological solutions (combined effort of STI and CEM)

Courtesy of Chiara Antuono, BE/ABP

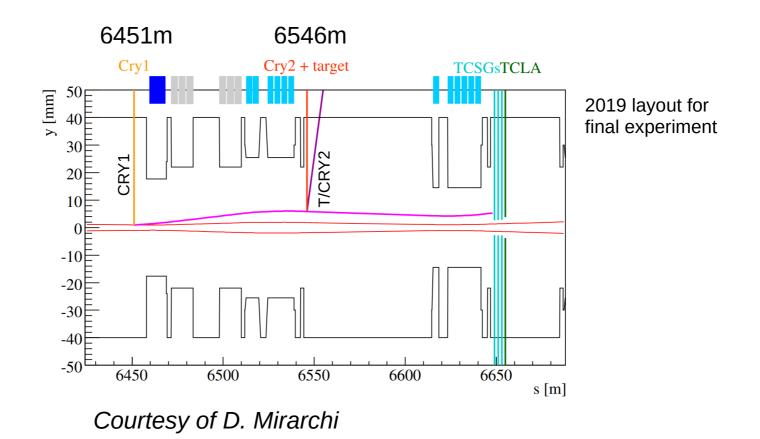
Towards a double-crystal test-stand in the LHC | PBC Annual Workshop '22

Introduction

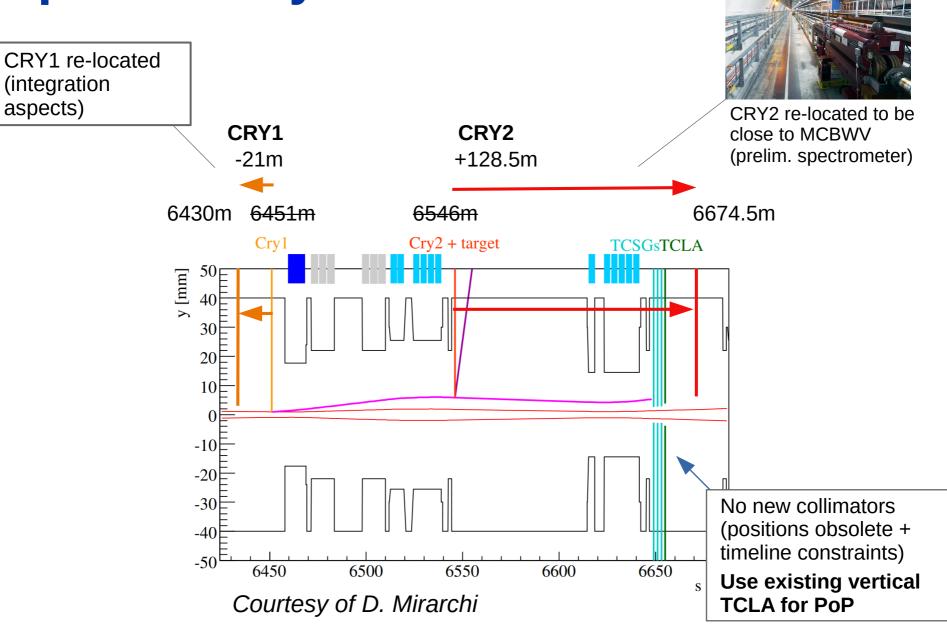
Status

Layout

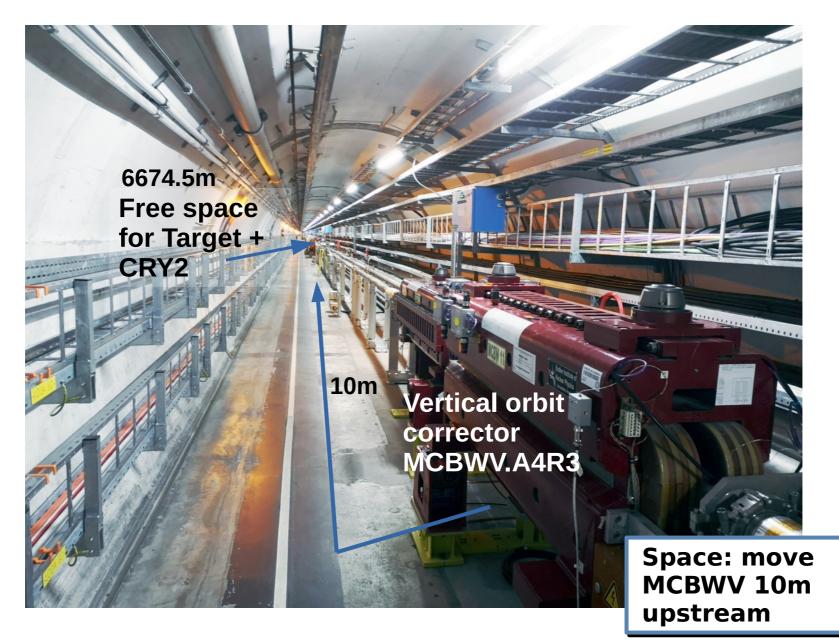
Beam dynamics simulations


Outlook

Conclusions


Initial IR3 Layout

- IR3 layout defined in 2019 for final experiment
- Visit of LHC tunnel early 2022 with colleagues from STI \rightarrow received feedback on integration aspects



Updated Layout

New proposed CRY2 location

Introduction

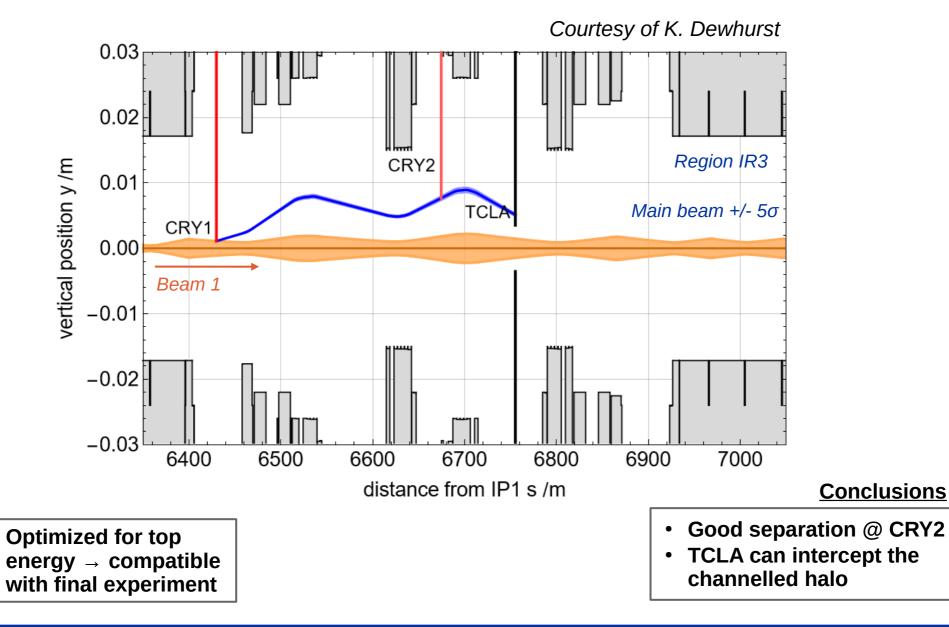
Status

Layout

Beam dynamics simulations

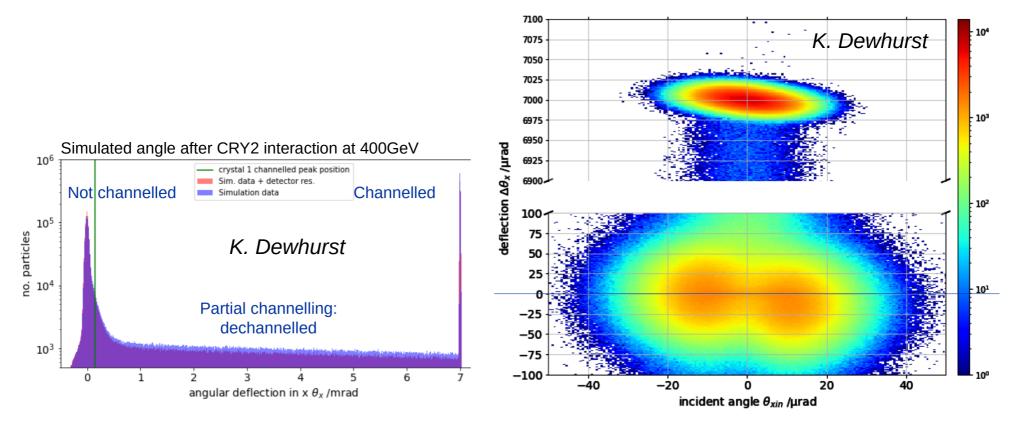
Outlook

Conclusions



Goal of beam dynamics simulations

- Beam orbit simulations:
 - Verify safe separation between main beam and channelled halo
 - Verify that residual of channelled halo is safely removed
- Simulate performance measurements of CRY2 in TeV range
- Probe possible solutions for expected **operational challenges**: crystal alignment, establishing double channelling, etc.
- Simulate expected efficiency (not discussed here)


Beam orbit simulations 6.8 TeV

CRY 2 channelling efficiency

- Assessment of (long) CRY2 channelling efficiency crucial for experiment
- CRY2 channelling efficiency at 400GeV can be measured at H8 using SPS beams
- Functional specifications based on SixTrack simulations
- Expected efficiency ~ 42% for ideal crystal

CRY 2 channelling efficiency at 1TeV

- Measure channelling efficiency at ~1TeV to 3TeV: region of interest for Λ_c produced at interaction of 7TeV protons with target
 - Pixel detector after CRY2 with channelled halo
 - Identify when double channelling is established
 - Measure intensity of double-channelled halo

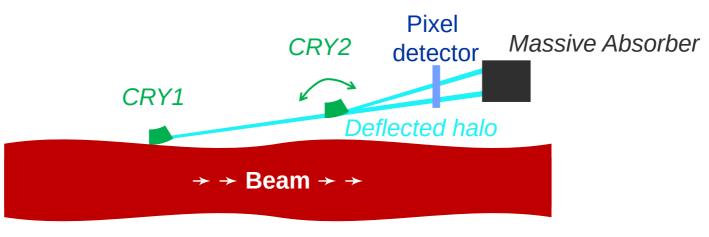
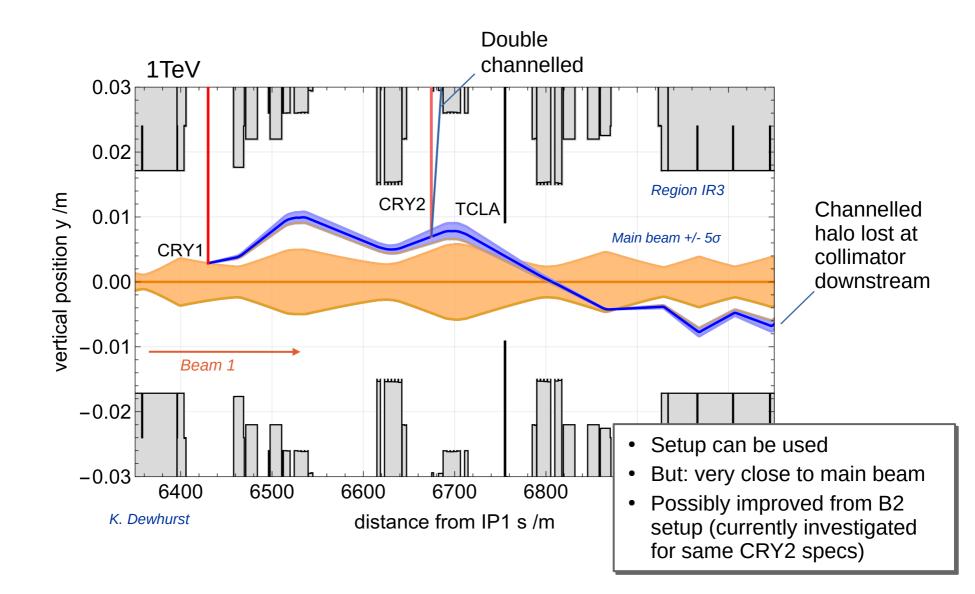



Illustration by D. Mirarchi

Towards a double-crystal test-stand in the LHC | PBC Annual Workshop '22

CRY 2 channelling efficiency at 1TeV

Introduction and status

Layout

Beam dynamics simulations

Outlook

Conclusions

Outlook

Possible pre-PoP machine studies (selection):

- Use collimator in IR3 in existing crystals in IR7 to **demonstrate principle** of capturing secondary beam halo (inverse setup)
- Studies with optimized phase advance Collimator-CRY → can statistics be improved by changing LHC magnet configuration?
- Confirm proposed orbit setup with bump (from spectrometer) – should not disturb nominal operation

Conclusions

• IR3 double crystal setup installation in LHC Run 3 for test purposes

- Demonstrate concept validity
- Gain experience with operational challenges
- **Considerable progress** on the way towards the Run 3 test stand:
 - Functional specifications approved
 - First simulation campaigns with promising results
 - Key hardware under construction or design (SY)
 - Concept for operation in preparation (OP)

References

Presentations

Layout and simulated performance of a LHC fixed-target test stand, 2nd MDM/EDM Workshop, Gargnano - 27.09.2022

Revised layout for fixed target experiments in IR3, PBC-FT WG – 11.03.2022

Possible crystal and magnet layout for FT experiments in IR3, PBC-FT WG – 28.10.2021

Fixed target layouts inspection, PBC-FT WG – 28.10.2021

Beam orbit with spectrometer for FT experiments in IR3, PBC-FT WG – 02.07.2021

Update on publication of IP3 and IP8 double-crystal layouts, PBC-FT WG – 20.11.2020

Publications

D. Mirarchi et al., Eur. Phys. J. C 80, 929 (2020)
M. Patecki et al., JACoW IPAC2022 (2022) 108-111, MOPOST024
P. Hermes et al. JACoW IPAC2022 (2022) 2134-2137, WEPOTK033

