NA60+ status report

G. Usai (INFN Cagliari) for the NA60+ collaboration

□ Hard and electromagnetic processes at the CERN-SPS: an investigation of the high- μ_B region of the QCD phase diagram via an **energy scan** ($\sqrt{s_{NN}}$ =6 to 17 GeV)

- Main features
 - \Box Coverage of a wide μ_B region
 - □ Precision physics: possibility of reaching high interaction rates (hundreds kHz)
 - □ Complete physics reach for **dimuons and charm**
 - Energy range complementary to FAIR/GSI (and J-PARC)

Aim at significant improvement (and extension) of the physics reach wrt the former NA60 experiment

Status of the project

Beam optics and integration studies

- → Paper submitted to NIM https://arxiv.org/abs/2210.17527
- → New optics prepared down to low SPS energy (to be tested with Pb beam this month)

Vertex spectrometer R&D (MAPS) in progress

- → Characterization of small pixel arrays and first prototype of large area MAPS
- → Assembly station for testing of mechanics/cooling of NA60+ vertex spectrometer

Muon tracker

- → Preparation of prototypes for muon tracking chambers, to be tested at SPS in 2023
- → Muon station geometry with MWPC and geometry implementation in Geant4

Prototype of the toroid magnet finalized and tested

→ Results in agreement with simulation studies

Physics performance: all studies updated to H8 conditions

→ New physics chapters: dilepton elliptic flow, hypernuclei

Letter of intent: finalization

NA60+ set-up in H8

CERN support to the project through Physics Beyond Colliders

Muon spectrometer position will be varied (rails), to cover mid-rapidity at different collision energies

Overview of the setup in Geant4

Beam energy scan (tentative plan)

- \square Beam energy scan with high(est) intensity Pb beam (~1-2x10⁷ ions/spill)
- □ Data taking at low energy (20GeV) may have to span over two years, if ion beam stays at 1 month/year
- □ Complementary proton runs at corresponding energies (reference for charmonia and thermal dimuon measurements)

	Year 1	Year 2	Year 3	Year 4	Year 5	Year 6
Beam energy (A GeV)	158	40	120	20 (30)	80	100
\sqrt{s}	17.3	8.8	15.1	6.3 (7.6)	12.3	13.8
Pb ions on target	$\sim 10^{12}$ per energy (~ 1 month)					
protons on target	$5 - 6 \cdot 10^{13}$ per energy (~ 22 days)					

PBC Report - Post-LS3 North Area Experiments ion beam requirements

Pb beam characteristics

Parameter in zone 138	160 GeV/c	30 GeV/c		
σ_{x} (mm)	0.19	0.33		
σ_{y} (mm)	0.19	0.36		
Transmission from T4 (%)	32.43	23.5		

Central "hole" defined by the sensors of the vertex spectrometer \rightarrow ~6 mm diameter Defines acceptance at forward y \rightarrow y_{lab, max} ~ 3.9 if upstream MAPS plane at 7.12 cm (y_{CMS}=2.92 at top SPS energy)

- □ Pb test beam on week 47 (end of November)
- ☐ Silicon Pb beam tracker:
- Telescope with ALPIDE MAPS sensors (synergy with ALICE)

NA60+ set-up: vertex region

MEP48 dipole magnet Field: 1.5 T over a 400mm gap

R&D: vertex spectrometer

Sensor based on 25 mm long units, replicated several times through stitching

→ up to **15cm length** for NA60+

R&D in progress

Common development

ALICE ←→ NA60+

State-of-the-art imaging technology TowerJazz 65 nm

Sensor thickness: few tens of microns of silicon → material budget <0.1% X₀

Spatial resolution $\leq 5 \mu m$

Cooling studies (NA60+ geometry) in progress

Complete NA60+ station \rightarrow 4 sensors

Ongoing R&D

Detector Characterization of small scale structures Submission of first large area MAPS with the stitching technique (MOSS) Development of test system for large area MAPS

Mechanics R/D of NA60+ silicon stations:

→ Positioning and gluing tests of (dummy) sensors on carbon foam/fiber supports with optical bench

Cooling with with air-flow and water Next step: experimental measurements

NA60+ muon stations with MWPC modules

Schematic diagram of the small and large sectors that make up the New Small Wheel

- ☐ Technologies under discussion:
 - ☐ GEM, MWPC
- ☐ Weizman Institute, Stony Brook

view of the first wheel of muon spectrometer built of 12 trapezoidal 30° sectors

MWPC prototype: design

First Prototype assembled at Weizmann institute

- □Two strip cathode boards, each made out of honeycomb sandwich 1 mm strip pitch
- □The strips on each cathode are running on a different direction, providing a small angle stereo readout
- □ 3 mm cathode-wire distance
- □ 3 mm wire pitch
- ☐ Readout via VMM3a ASIC

I. Ravinovich

MWPC prototype: construction and lab tests

cosmic test bench

X-ray tomography

First muon signals

NA60+status report, PBC annual meeti

R&D: toroidal magnet

CERN EP-DT design

Eight sectors, 12 turns per coil

Conductor has a square copper section with a circular cooling channel in the centre

Operating Current [kA]	16.6
Amp-turns [kA]	199
Combined inductance [mH]	9.5
Resistivity Al 1100 @RT [$\mu\Omega$.cm]	2.67
Length Conductor [m]	800
Total resistance $[m\Omega]$	10.4
Dissipated power [MW]	2.8

- □ **Prototype (1:5 scale)** was built and tested in 2020-2021, to check calculations and investigate mechanical solutions, in view of the final object
 - → works correctly and as expected

Dimuon thermal spectra, temperature (new for H8)

~3.5·10⁶ reconstructed dimuon pairs in central Pb-Pb at \sqrt{s} =6.3, 8.8 GeV

Total dimuon spectrum

Dimuon signal spectrum

Thermal dimuon spectra and temperature (T_{slope}) fits

Caloric curve and fireball lifetime (new for H8)

~3% uncertainty on the T_{slope} measurement: ○ Allows an **accurate mapping** of the √s-dependence of T_{slope} around T_c Precise measurement of thermal yield in 0.3<M<0.7 GeV sensitive to the fireball lifetime

ρ - a_1 chiral mixing (new for H8)

Pb-Pb vs=8.8 GeV 0-5% central collisions

 ρ - a_1 chiral mixing: yield enhancement in 1<M<1.5 GeV

Measurement challenging, but sensitivity to enhancement!

Elliptic flow of thermal dimuons (new for H8)

- No measurements at present
- ☐ Predictions at the RHIC energies
- LMR dominated by HG: almost linear increase of v₂ vs mass
- ☐ IMR dominated by QGP: small v_2

□ No prediction at the SPS energies Two possible scenarios: $v_2=0 \rightarrow$ measurement with uncertainty between 0.003 and 0.008 $v_2=v_2^{RHIC} \rightarrow$ increase of v2 versus mass (HG) and a drop in the IMR (QGP)

Charmonium measurement (new for H8)

With 10^{12} incident Pb ions on a 7.5 mm Pb target $\rightarrow L_{int} \sim 24 \text{ nb}^{-1}$

NA60+ can aim at

 $\sim O(10^4) \, J/\psi \text{ at } 50 \, \text{GeV}$

 $\sim O(10^5) \text{ J/}\psi \text{ at } 158 \text{ GeV}$

pΑ

Use a system of various nuclear targets and extrapolate cross sections to pp

→ reference for R_{AA} measurement

Pb-Pb

Assume only CNM effects, extrapolated from p-A, for N_{part} <50 and 20% "anomalous" suppression for N_{part} >50

Open charm measurement (new for H8)

- With ~10¹¹ minimum bias Pb-Pb collisions (1 month of data taking)
 - □ More than 3.10^6 reconstructed D⁰ in central Pb-Pb collisions at $\sqrt{s_{NN}}=17.3$ GeV
 - \Box Allows for differential studies of yield and v_2 vs. p_T , y and centrality
 - D⁰ at lower collision energies with statistical precision at the percent level
 - \Box Measurement of D_s yield feasible with statistical precision of few percent
 - \Box Λ_c baryon also accessible

 $\mathsf{D_s}^+{ o}\mathsf{\Phi}\pi o \mathsf{KK}\pi$

 $\Lambda_c^+ \rightarrow pK\pi$

Strangeness (new for H8)

Decay products reconstructed in the vertex spectrometer

ο Geometrical selections on the displaced decay-vertex topology (cτ \sim 2-3 cm) to enhance the S/B (except for the ϕ)

Very large statistical significance for K_{S}^{0} , Λ^{0} , φ , Ξ and Ω hyperons:

- o Large improvement in their measurement w.r.t. to past SPS measurements
- Elliptic flow

A hypernuclear factory at CERN

In the Statistical Hadronisation Model:

 \rightarrow hypernuclei yield **peaks at low** $\sqrt{s_{NN}}$

*N.B. detectable decay channels have O(50%) B.R. Refined SHM predictions soon to be published

Heavy hypernuclei: statistics at different energies can be integrated

→Systematic study of properties and production of hypernuclei up to A=6 is well in reach!

Letter of intent

- ☐ Editing in final stage
- ☐ Editorial team:
 - ☐ INFN Cagliari, Torino
 - Weizmann
 - ☐ Stony Brook
 - □ CERN EP-AIP, EP-DT, BE-EA*, HSE
- ☐ To be finalized in the next few weeks

*A. Gerbershagen now at Groningen University

LoI: NA60+ NA60+ Collaboration
Contents
Executive summary
1 Overview of the QCD phase diagram and general landscape for high- $\mu_{ m B}$ studies
2 Rare probes of the QGP: concepts and observables
2.1 Thermal radiation
2.1.1 Chiral symmetry restoration: measurement of ρ -a ₁ chiral mixing
2.1.2 Hadron-parton phase transition: measurement of the strongly interacting matter
caloric curve at high μ_B 2.1.3 Elliptic flow of thermal dileptons
2.1.3 Elliptic flow of thermal dileptons 2.1.4 Thermal dilepton excitation function and fireball lifetime
2.2 Transport properties of the QGP and hadronic phase: open charm
2.3 Deconfinement threshold: charmonium suppression $(J/\psi, \psi(2S), \chi_c)$
2.4 QGP chemistry: strangeness production
2.5 Studies on hyperon-nucleon interactions: production of hypernuclei
3 The NA60+ experiment: detector concept and general features
3 The NA60+ experiment: detector concept and general features 3.1 Experimental layout
3.1.1 Target system
3.1.2 Dipole magnet
3.1.3 Vertex spectrometer
3.1.4 Muon spectrometer
3.1.5 Toroidal magnet
3.2 Beam energy scan and data taking conditions
3.3 Role of NA60+ in the experimental landscape of high- $\mu_{\rm B}$ studies
4 Physics performance studies 2
4.1 Simulation frameworks
4.1.1 Fast simulation/reconstruction
4.1.2 Geant4 simulation
4.1.3 FLUKA simulations 2
4.2 Hadronic measurements
4.2.1 Open charm
4.2.2 Strangeness 3 4.2.3 Hypernucle 3
4.2.3 Hypernucle 3 4.3 Dimuon measurements 3
4.3.1 Reconstruction efficiencies and mass resolution
4.3.2 Caloric curve, ρ-a1 chiral mixing and fireball lifetime
4.3.3 Elliptic flow of thermal dimuons
4.4 Charmonia
5 Detectors and systems
5.1 FLUKA rate calculations 4 5.2 Target system 4
5.2 Target system 5.3 Dipole magnet
5.4 Vertex telescope 4
5.4.1 Specifications
5.4.2 Technology choice
5.4.3 Required R&D
i

	5.4.4 Mechanics
	Muon spectrometer
_	5.5.1 Muon spectrometer tracking stations
	5.5.2 Micro Pattern Gas Detectors
	5.5.3 Multi-Wire Proportional Chambers (MWPC)
	5.5.4 Cost estimates for muon spectrometer
	The Toroidal Magneti
	5.6.1 The toroid design
	5.6.2 Cooling considerations and calculations
	5.6.3 Magnet Demonstrator (scale 1:5)
	5.6.4 Magnetic field measurement
5.7	Data acquisition, processing and computing (Ruben + ?)
Evno	rimental site
_	EHN1 hall and current layout of zone PPE138
	Proposed beam setup
	<u> </u>
	Proposed zone layout and integration studies
	Radiation protection studies
	6.4.1 Shielding layout
	6.4.2 Prompt dose rates
	6.4.3 Residual dose rates
	6.4.4 Air activation
	6.4.5 Accidental beam loss
	line and preliminary cost estimate
1 iiiie	mie and preminiary cost estimate

NA60+ Collaboration

LoI: NA60+

Timeline and cost-estimate

- \square 2022 \rightarrow Letter of Intent
- \square 2024-25 \rightarrow Proposal
- □ 2025-2028 → Construction
- ☐ From 2029 → Data taking

Preliminary cost estimate

Sub-system	Estimated cost (MCHF)		
Vertex spectrometer	2-3		
Muon spectrometer	3		
Toroidal magnet	4		
RP monitors, Shielding	1.5		

☐ Foresee at least 6 yrs of data taking (one energy point per year with p-A and Pb-Pb)

Summary and outlook

- \Box Very rich physics case \rightarrow discovery potential for QCD phase diagram at high μ_B
- □ R&D on several detector system is progressing well
- ☐ Fundamental steps in 2023 after release of LOI:
 - ☐ Consolidation of detectors R&D:
 - □ pixel tracker → release and test of first stitched sensor for ALICE ITS3
 - □ muon chambers → test beam for MWPC prototypes; GEM prototypes
 - □ toroidal magnet → design of full scale magnet
 - □ interaction trigger → various options under study
 - Consolidation of collaboration
 - □ Discussion with funding agencies

Backup

(Di)muon detection performance

Detector performance studies \rightarrow based on a **simulation framework** with a semi-analytical tracking algorithm (Kalman filter) **FLUKA** for background studies

QGP (M>1 GeV/ c^2)

- ☐ Full phase-space acceptance at dimuon low and intermediate masses $\rightarrow > 1\%$
- \square Good coverage down to midrapidity AND zero p_T , realized at all energies by displacing the muon spectrometer

The mass resolution for resonances varies from <10 MeV (ω) to ~30 MeV (J/ψ)

(factor > 2 improvement with respect to NA60)

Thermal dimuons in NA60+: motivation

- QCD phase diagram:
 - Existence of critical point and first order phase transition put forward

Additional chiral phase transition:

Exploration of changes in the hadron spectrum

- \Box Aims at precision measurements of thermal dimuon mass spectra in beam energy scan at high μ_B :
 - □ Measurement of temeperature (M>1.5 GeV) → Caloric curve
 - → Measurement of yield (0.3<M<0.7) → Fireball lifetime
 </p>
 - □ Measurement of yield (0.9<M<1.4 GeV) $\rightarrow \rho$ -a₁ chiral mixing
- Additional measurement of dimuon elliptic flow:
 - \square Measurement of elliptic flow (v₂) vs mass and p_T \rightarrow further insight into phase transition

Open charm measurement in NA60+: motivation

- No results at SPS energies (only indirect measurements at top SPS energy, NA60 and NA49)
- Aims at precision measurements of nuclear modification factor and elliptic flow for BOTH meson (D⁰,D⁺,D_s) and baryon (Λ_c) states
 - Insight into QGP transport properties
 - □ Study of charm thermalization at low √s
 - □ Insight into **hadronization mechanism** (via ratios D_s/D^0 and Λ_c/D^0)
 - □ Use **total charm cross section** as a reference for charmonium studies

Complements results at collider energies!
Different "weight" of QGP and hadronic phase

D-meson elliptic flow and charm thermalization vanishes at low energy?

D_s enhancement due to quark recombination

Charmonium measurement in NA60+: motivation

- Accurate studies were performed at √s=17.3 GeV (NA50, NA60)
- QGP-induced suppression evaluated with respect to a cold nuclear matter reference obtained with systematic p-A studies
- \sim **30-40% anomalous suppression effect** possibly due to disappearance of feed-down from χ_c and $\psi(2S)$

J/ψ production not studied below top SPS energies!

Perform an energy scan in

$$E_{lab} = 20 - 158 \text{ GeV}$$

- □ Decreasing √s:
 - ☐ Onset of charmonium melting to be correlated to T measurement via thermal dimuons
 - ☐ Stronger CNM effects to be accounted for with pA data taking at the same √s

Strangeness measurement in NA60+: motivation

- Pb-Pb and p-Pb(Be) interactions at low √s_{NN} probe multiplicity region around 10-100 particles at mid rapidity → overlaps to high-multiplicity pp and MB p-Pb collision at the LHC
- Matter/anti-matter imbalance rate would allow a precise determination of the baryochemical potential → probe production probabilities in an energy region where baryon number conservation depletes anti-particle yields
- NA60+: complete the measurement of the strangeness enhancement carried by NA49, NA57 with precise measurements of K⁰_S, φ, Ξ[±], and Ω[±] including elliptic flow

Hypernuclei: the knowns, the unknowns and discoveries potential

- □ Open points in hypernuclear physics that can be addressed with NA60+:
- □ Precise characterisation of known states: properties of Λ hypernuclei
- □ Properties and confirmation of poorly known/unknown hypernuclei: A=6, light ΛΛ hypernuclei
- \square Discovery of light Ξ and Σ hypernuclei bound according to theory [1,2] (e.g. NNN Ξ)

^[1] E. Hiyama et al. *Phys. Rev. Lett.* 124, 092501

^[2] H. Le et al. Eur. Phys. J. A (2021) 57: 339