

Apparatus for Meson and Baryon Experimental Research

Jan Friedrich
Technical University of Munich
on behalf of the Collaboration

Physics Beyond Colliders Annual Meeting 8 November 2022

Open fundamental questions in QCD

The excitation scheme of hadronic systems

[from: B. Grube, EHM workshop (2020)]

The complete picture: Wigner distributions

Measurable quantities: (iso)spin-parity, masses, couplings and decay widths

Masses of the light hadrons

Pion

- $M_{\pi} \sim 140 \text{MeV}$
- Spin 0
- 2 light valence quarks

Kaon

- $M_K \sim 490 \text{MeV}$
- Spin 0
- 1 light and 1 "heavy" valence quarks

Proton

- $M_p \sim 940 \text{MeV}$
- Spin 1/2
- 3 light valence quarks
- As composite systems, we want to understand hadrons in terms of their constituents: the QCD quarks and gluons
- The Higgs mass of the valence quarks contributes only little to the physical hadron masses
- Pion-to-proton mass ratio 1/7 much different from the constituent-quark inspired value of 2/3

Emergent Hadron Mass

- Dynamic generation of mass in continuum QCD
- Gluon self-interaction in the infra-red leads to gluon "self-mass generation"

- Emergence of Hadron Mass is to some extent understood within continuum and lattice QCD calculations
- Prove and provide more input by measurement of
 - Quark and gluon PDFs of pion, kaon and proton
 - Hadron radii as consequence of confinement
 - Mass spectra of excited mesons

AMBER physics programme

- Letter of Intent 2018 as COMPASS++/AMBER (arXiv:1808.00848) for upgrades and extensions of the setup
- Use of conventional and radiofrequency (RF) separated beams
- Proposal in two Phases
- Phase-1 approved by SPSC in December 2020
- Phase-2 in drafting stage, plan to submit in first half of 2023
- MoU draft close to final, signatures expected by end of 2022

Program	Physics Goals	Beam Energy [GeV]	Beam Intensity [s ⁻¹]	Trigger Rate [kHz]	Beam Type	Target	Earliest start time, duration	Hardware additions
muon-proton elastic scattering	Precision proton-radius measurement	100	4 · 10 ⁶	100	μ^{\pm}	high- pressure H2	2022 1 year	active TPC, SciFi trigger, silicon veto,
Hard exclusive reactions	GPD E	160	2 · 10 ⁷	10	μ^{\pm}	NH ₃	2022 2 years	recoil silicon, modified polarised target magnet
Input for Dark Matter Search	p production cross section	20-280	5 · 10 ⁵	25	р	LH2, LHe	2022 1 month	liquid helium target
p-induced spectroscopy	Heavy quark exotics	12, 20	5 · 10 ⁷	25	\overline{p}	LH2	2022 2 years	target spectrometer: tracking, calorimetry
Drell-Yan	Pion PDFs	190	7 · 10 ⁷	25	π^{\pm}	C/W	2022 1-2 years	
Drell-Yan (RF)	Kaon PDFs & Nucleon TMDs	~100	10 ⁸	25-50	K^{\pm}, \overline{p}	NH₃ [†] , C/W	2026 2-3 years	"active absorber", vertex detector
Primakoff (RF)	Kaon polarisa- bility & pion life time	~100	5 · 10 ⁶	> 10	<u>K</u> -	Ni	non-exclusive 2026 1 year	
Prompt Photons (RF)	Meson gluon PDFs	≥ 100	5·10 ⁶	10-100	K^{\pm} π^{\pm}	LH2, Ni	non-exclusive 2026 1-2 years	hodoscope
K-induced Spectroscopy (RF)	High-precision strange-meson spectrum	50-100	5 · 10 ⁶	25	<i>K</i> ⁻	LH2	2026 1 year	recoil TOF, forward PID
Vector mesons (RF)	Spin Density Matrix Elements	50-100	5·10 ⁶	10-100	K^{\pm}, π^{\pm}	from H to Pb	2026 1 year	

Table 2: Requirements for future programmes at the M2 beam line after 2021. Muon beams are in blue, conventional hadron beams in green, and RF-separated hadron beams in red.

Phase-1
with conventional
hadron and muon
beams
2022 → 2028

Phase-2
with conventional
and rf-separated
beams
2029 and beyond

AMBER Collaboration and timelines

• Successor of COMPASS

- with appropriate extensions and modernisations
- at the CERN M2 beamline
- ~200 physicists from 34 institutes

The ideas of the Phase-2 proposal

 Kaon structure via the Drell-Yan process

 Gluon structure of pions and kaons via prompt photons

Primakoff reactions to investigate Kaon-photon coupling: Kaon polarisability, $F_{KK\pi}$

 Diffractive production of vector mesons and di-jets to study distribution amplitudes

 Spectroscopy of mesons with strangeness

 Meson charge radii via electron scattering in inverse kinematics

Conventional vs. rf-separated beams

- Panofsky-Schnell-System for beam particle species discrimination: same momentum but different velocities
 - For M2: Interest in K^- and antiproton beams
 - Technique and options covered in the following talk by
 F. Metzger
- Increase of the purity of the kaon (or antiproton) component
- Same or reduced intensity of the desired component (compared to original beam)
- Only possible at beam energies less than about 100 GeV
- Promising option for part of the program: Primakoff, spectroscopy, kaon radius
- For physics requiring high intensity and energy: Upgraded conventional beam could be good alternative

 Follow-up one-day workshop with the CERN accelerator group

Beam PID by CEDARs

- High-efficiency and high-purity beam particle identification is of key importance in all scenarios of hadron beams
- Optimum operation not only concerns mechanics and optics (temperature stabilization, photon detection), but as well parallelism of the incoming beam → material budget of the beamline

Kaon structure via the Drell-Yan process

Available data

- Only 700 events from NA3
- The kaon valence distributions are practically unknown
- There is no data on kaon sea and gluon content

Prospects for AMBER measurements

- Kaon valence PDF: can be addressed with negative kaon beam
- Kaon sea PDF: combine the two beam charges

Exotic mesons

$$J^{PC} = \sqrt[q]{q} + \sqrt[q]{$$

Where are they?

How to identify them?

- Spin-exotic: $J^{PC} = 0^{--}, 0^{+-}, 1^{-+}, \dots$
- Supernumerary states
- Flavor-exotic: $|Q|, |I_3|, |S|, |C| \ge 2$
- Comparison with models, lattice

Need:

- Large data sets with small statistical uncertainties
- Complementary experiments
 - production mechanisms
 - final states
- Advanced analysis methods
 - reaction models
 - theoretical constraints

Limitations at COMPASS

 Final-state particle identification does not cover full momentum range

Cannot identify the full final state

- Assume sample contains only $K^-\pi^-\pi^+$ events
 - \blacktriangleright Minimal PID: Need to know which of h^- is K^-
- Require only one of h⁻ to be identified
- ► Acceptance reduced by more than 1/3
- ► Almost no suppression of KKK, $\pi\pi\pi$, ...

Blind spot in experimental acceptance

- ightharpoonup Decay amplitudes of different J^P are orthogonal
- Loss of orthogonality taking acceptance into account

COMPASS: $K^-\pi^-\pi^+$

Study reaction $K^- + p \rightarrow K^-\pi^-\pi^+ + p$ by tagging beam kaons (2.4%)

- \Rightarrow access to all kaon states: K_J , K_J^*
- ⇒ world's largest data set so far: 720 000 exclusive events (ACCMOR: 200k ev.)

Goal for AMBER: collect $10-20\times 10^6$ exclusive $K^-\pi^-\pi^+$ events

Hadron charge radii

Protons in hydrogen target (or other stable nuclei):

Measurement via elastic electron or muon scattering

Cross section:

$$\frac{d\sigma}{dQ^2} = \frac{4\pi\alpha^2}{Q^4} R \left(\varepsilon G_E^2 + \tau G_M^2 \right)$$

Charge radius from the slope of G_E

$$\langle r_E^2 \rangle = -6\hbar^2 \left. \frac{\mathrm{d}G_E(Q^2)}{\mathrm{d}Q^2} \right|_{Q^2 \to 0}$$

For unstable particles, electron scattering can only be realised in *inverse kinematics*

Simulations for pions and kaons

Assume 30 days of beam time (100% efficiency) - use pole description for FF

Conclusions

- NA66/AMBER at CERN has started its Phase-1 of a broad hadron physics programme at the M2 beamline
- The physics cases of Phase-2 are being worked on for a proposal to SPSC in 2023
- The options for identifying and/or enriching the kaon beam component are further studied – an enhanced conventional beamline may be equally acceptable or preferable for many of the investigated physics cases

https://home.cern/news/news/physics/meet-amber

Voir en français

Meet AMBER

The next-generation successor of the COMPASS experiment will measure fundamental properties of the proton and its relatives

8 MARCH, 2021 | By Ana Lopes

Backup

Hybrids: Lattice QCD

Hybrids:

- excitation of gluonic degrees of freedom
- angular momentum in flux tube
- lightest hybrid predicted to have $J^{PC} = 1^{-+}$

[J. Dudek et al., Hadron Spectrum Collaboration, Phys. Rev. D 88, 094505 (2013)]

Limitations at COMPASS

- \triangleright Only about 2.4 % K^- in negative hadron beam
- ▶ About 35× more π^- in negative hadron beam
 - \rightarrow Background from π^- diffraction

Likelihood-based CEDAR PID

- ► Finite beam inclination at CEDAR position limits CEDAR PID
- Use information from precisely measured inclination of the beam-particle track
 - Spatial position of beam particle precisely measured at COMPASS target
 - Spatial position at COMPASS target related to beam inclination at CEDAR position by beam optics
- ▶ High efficiency of about 85 % and low π^- impurity of about 3 %

Setup for strange-meson spectroscopy

- hadron BMS
- CEDARs
- 2-stage spectrometer
- IH2 target
- RPD
- Si trackers
- ECAL 0, 1, 2
- RICH-0, RICH-1, RICH-2

Jan Friedrich

Kinematics for different beam particles

$$K^- e_{target}^- \rightarrow K^- e^-$$

$$Q^2 \approx 2m_e \cdot E_e$$

$$s = 2E_b m_e + m_b^2 + m_e^2$$

$$Q_{max}^{2} = \frac{4 \cdot m_{e}^{2} \cdot p_{b}^{2}}{s} = 4 \cdot p_{cm}^{2}$$

Beam	E _{beam} [GeV]	Q^2_{max} [GeV²]	$E_{scatter}^{min}(Q^2 \sim 10^{-4})$ [GeV]	$E_{max}^{electron} \ Q_{max}^2$ [GeV]	$E_e^{lab-equivalent}$ [GeV]
π	280	0,268	17.2	173	1,030
K	280	0.15	105.2	84.7	0,29
K	80	0,021	59.7	20.2	0,072
K	50	0,009	41.3	8.7	0,047
p	280	0.07	155.3	34.3	0,152

Q2 range and radius effect

- large values of Q²: higher sensitivity to charge distribution $->< r_E^2>$
- small values of Q²: smaller extrapolation uncertainties to Q² = 0 and $\frac{dF(Q^2)}{dQ^2}|_{Q^2=0}$

Beam	E _{beam}	Q_{max}^2	Relative charge-radius		
	[GeV]	[GeV ²]	effect on σ(Q²)		
π	280	0,268	~54%		
K	280	0,15	~30%		
K	80	0,021	~5%		
K	50	0,009	~2-3%		
p	280	0,070	~28%		

Mass budgets for proton, pion and kaon

- The mass composition of the proton is structurally different from that of pions and kaons
- Pions and kaons are the Nambu-Goldstone bosons of the (approximate and spontaneously broken) chiral symmetry of strong interaction
- In the chiral limit
 - the mass of the proton remains basically unchanged
 - pions and kaons are massless

Thus for a full understanding the **partonic structure** of hadrons, the **meson PDFs** must be known on a similar level as those of the nucleon

Gluon PDF of the pion

FIG. 4. Glue distribution, $xg^{\pi}(x, \zeta_2 = 2 \text{ GeV})$: solid purple curve, prediction from Ref. [43]. Panel A highlights low-x and Panel B, large-x. The band surrounding this curve expresses a conservative estimate of uncertainty in the prediction, obtained by varying ζ_H by $\pm 10\%$. Comparisons are selected fits to data: dashed blue curve, [32]; dotted red curve and associated band, [33]; dot-dashed brown curve and band, [34].

Antiproton production cross-sections

Antiproton measurements at AMBER

10²

Plots: impact of measurements on constraining the production of \bar{p} (fraction of total source term constrained by phase space of experiment)

- Parameter space for the p-He channel corresponding to an exemplary fixed target experiment
- 3% relative uncertainty within the blue regions (30% outside)

- Secondary p beam with 50, 100, 150, 200, 280 GeV
- Liquid H₂ and He target
- Minimum bias trigger allowing beam intensity of $5 \cdot 10^5 \text{ s}^{-1}$
- Beam proton ID in CEDARs, antiproton ID in RICH
- Measure differential cross section in 10 bins in $p_n \& \eta$
- 2.4<η<5.6
- Statistical uncertainty ≈ 0.5 1% per data point
- Total systematic uncertainty ≈ 5% (efficiencies, dead time)
- AMBER pilot run for antiproton production measurements is scheduled in the end of 2022 (LD target, setup tests, rates)
- Main run is planned to 2023

Drell-Yan and pion PDFs at AMBER

• Iso-scalar target (12C) to minimize nuclear effects

Beams of positively and negatively charged pions to separate valence and sea contribution:

- 250k DY events expected (current available statistics 25k events)
- First precise and direct measurement of the sea quark distribution in the pion
- 190 GeV pion beam
- Target / vertex detector / hadron
- absorber
- Radiation protection
- Di-muon mass resolution of 100 MeV

J/ψ production at AMBER

- Large statistics on J/ψ production at dimuon channel (30-50x 'DY clean region')
- Inclusive measurements: due to the hadron
- absorber prompt production from the rest can't be separated
- Expected significant feed-down: $\psi(2S)$, χ_{c1} , χ_{c2}
- Expected to have dominant contribution from 2→1 processes
- Use J/ψ polarization to distinguish production mechanism: polarization is sensitive to relative contributions of quark- and gluon-induced productions

Angular distribution

$$\frac{d\sigma}{d\cos\theta} \propto 1 + \lambda\cos^2\theta$$

$$\lambda = +1 \iff J_z = \pm 1$$
$$q\bar{q} \to J/\psi$$

$$\lambda = 0 \iff$$
 unpolarised

$$\lambda = -1 \iff J_z = 0$$
$$gg \to J/\psi$$