

RF separated beams in CERN's secondary M2 beam line

Fabian Metzger^{1,2}, Dipanwita Banerjee¹, Johannes Bernhard¹, Markus Brugger¹, Lau Gatignon³, Alexander Gerbershagen⁴, Frank Gerigk¹, Laurie Nevay¹, Silvia Schuh¹ on behalf of the PBC Conventional Beams Working Group

AMBER at CERN's M2 beam line

AMBER's phase 2 measurements

	Physics	Beam	Beam	Trigger	Beam		Earliest	Hardware
Program	Goals	Energy	Intensity	Rate	Type	Target	start time,	additions
		[GeV]	$[s^{-1}]$	[kHz]			duration	
Drell-Yan	Kaon PDFs &	~100	108	25-50	K^{\pm},\overline{p}	NH_3^{\uparrow} ,	2026	"active absorber",
(RF)	Nucleon TMDs	200			, _F	C/W	2-3 years	vertex detector
(202)	Kaon polarisa-					0/	non-exclusive	
Primakoff	bility & pion	~100	$5 \cdot 10^{6}$	> 10	K^{-}	Ni	2026	
(RF)	life time						1 year	
Prompt							non-exclusive	
Photons	Meson gluon	≥ 100	$5 \cdot 10^{6}$	10-100	K^\pm	LH2,	2026	hodoscope
(RF)	PDFs				π^\pm	Ni	1-2 years	
K-induced	High-precision							
Spectroscopy	strange-meson	50-100	$5 \cdot 10^{6}$	25	K^{-}	LH2	2026	recoil TOF,
(RF)	spectrum						1 year	forward PID
	Spin Density							
Vector mesons	Matrix	50-100	$5 \cdot 10^{6}$	10-100	K^{\pm},π^{\pm}	from H	2026	
(RF)	Elements					to Pb	1 year	

Very optimistic.

Current estimates: LHC Run 4

AMBER at CERN's M2 beam line - ctd

2 workshops jointly organized by BE Experimental Area Group together with the AMBER collaboration, the EP-SME, SY-RF groups and the CERN TH department:

- 1. Workshop on RF separated beams, 30 Sep. 2021: https://indico.cern.ch/event/1069879/
 - Define the physics case(s) for the phase-2 physics measurement goals of the AMBER collaboration
 - Present the status of the currently available RF separated beam line studies
 - Review the present technical limitations, with the goal to define the next steps towards a
 potential feasibility study
- 2. Follow-up Workshop, 23-24 March 2022: https://indico.cern.ch/event/1133376/
 - Outcome of the RF separated beams workshop of September 2021

08.11.2022

Review of kaon induced DY with improvements in the conventional beam line setup

Principle of RF separation

- In a secondary beam, one has different particle species with same momentum
 - Discriminate those species by their velocities
 - For M2: Large interest in kaon beams
- Time-dependent transverse kick by RF cavities in transverse dipole mode
- Kick by RF1 compensated or amplified by RF2 depending on the velocity

•
$$\theta_{\mathrm{tot}} = \theta \left(\sin \left(\varphi(t) \right) + \sin \left(\varphi(t) + \alpha + \Delta \varphi_{12} \right) \right) = 2\theta \sin \left(\varphi(t) + \frac{\alpha + \Delta \varphi_{12}}{2} \right) \cos \left(\frac{\alpha + \Delta \varphi_{12}}{2} \right)$$
 Final kick

•
$$\bar{\theta} = \sqrt{\frac{1}{2\pi} \int_0^{2\pi} \theta_{\text{tot}}^2(\varphi) d\varphi} = \sqrt{2}\theta \cos\left(\frac{\alpha}{2}\right)$$
 Average kick

Cavity parameters

We maximized the distance between the cavities

- Achieved $L \approx 830$ m
- Cavity parameters based on ILC crab cavities
 - Radio frequency: f = 3.9 GHz
 - Cavity iris diameter: 2R = 30 mm
 - Total active cavity length: $L_{\text{tot}} = 10 \text{m}$
 - Maximal kick per cavity: $dp = 50 \, \text{MeV}/c$
- Calculate beam momentum

•
$$\Delta \varphi = 2\pi f \Delta t = \frac{2\pi f L}{c} \cdot \frac{E_1 - E_2}{pc} \approx \frac{\pi f L}{c} \cdot \frac{(m_1^2 - m_2^2)c^2}{p^2}$$

•
$$p \approx \sqrt{\frac{fL}{c}\frac{\pi}{\Delta\varphi}} \times \sqrt{(m_1c)^2 - (m_2c)^2}$$

Focused vs. parallel beam in the cavities

Started with a focus in the cavities

Focused beam

- Beam is large in x', but small in x
- Relative effect of the kick is small
- Beam fits well through the cavity apertures

Parallel beam

- Beam is small in x', but large in x
- Relative effect of the kick is larger ⇒ Better separation

- Emittance is constant ⇒ Smaller divergence means larger beam size
 - Define R_{12} optical function by aperture and beam line acceptance to minimize losses $R_{12} = \frac{\text{Radius of the iris}}{\text{Acceptance}} = 7.5 \, \text{mm}/\text{mrad}$
 - We considered the effective cavity aperture

Phase space distribution after RF2

Phase space distribution 20m after RF2 (dump)

 K^- phase space

 π^- phase space

- Angular separation converted into spatial separation
- With a beam dump, one can optimize either the intensity or the purity; here the share of K^-
- For a given cavity kick, the drift needs to be limited; otherwise, particles are lost at the refocussing magnet

Separation power

- Everything above the solid red curve is currently limited due to radiation protection in the EHN2 hall
- Simulated with 150 units on T6 (1 unit $\hat{=}$ 10¹¹ protons on target)

08.11.2022

SPS spill length is 4.8s (beam constantly extracted over this period)

Summary and conclusions of current status

- We have 5×10^5 kaons per spill with 50% purity; going down to 20% purity means increase to 3×10^6
- For the open spectrometer measurements, RF separation shows promising results
- For Drell-Yan the intensities are not sufficient
 - Other options being considered, exploiting upgrades of current beam line with respect to vacuum and optics improvements
- With the current parameters and beam optics, we have $p \approx 68 \, {\rm GeV}/c$ (already close to achievable maximum due to $p \propto \sqrt{fL}$)
- Beam PID will be necessary in any case due to impurities and beam purity constraints
- Results are summarized in a <u>PBC-note</u> and submitted to NIM A

- Studies to date assumed homogenous electric field over cavity iris
 - With migration from MAD-X to BDSIM realistic electric field variations are taken into account

Field of the ILC crab cavities

Cavity model in BDSIM

- A general description of time-variation has been added to the code (thanks to L. Nevay!)
- Cavity geometry of ILC crab cavities has been modelled and included in BDSIM
- Electric and magnetic field maps (3D) as shown on the previous slide have been overlayed on the cavity geometry
- The model was successfully validated → Tests performed with actual optics and unwanted particles
 - → They receive indeed no kick as intended

Outlook

- Evaluation of impact of inhomogeneities of the realistic electric field on the separation power
 - For particles of interest, transverse field variations are expected to influence angular separation
 - For unwanted particles, no change expected
 - Reevaluate the separation power plot with both effects considered
- Background studies
 - Analysis of particles generated in the beam dump and mitigation thereof
- Idea of circular polarization (from 2021 workshop)

- Exploitation of deflection in both transverse planes
- Investigate possibility to keep muon beam in M2 parallel to the RF separated beam

Thank you for your attention!

Backup

AMBER beam requirements

08.11.2022

RF Workshop

Follow-Up Workshop

RF-Separated Beam Project for the M2 Beam Line at CERN

Measurment	Drell-Yan	Kaon polarisability
Energy in GeV	190	100
Kaon intensity in 10 ⁵ per spill	≥ 70	≥ 10

Phase shifts

Optics development

Optics challenges:

- Beam: Compromise between size and parallelism in cavities
 ⇒ Optimization
- Parallel beam in CEDARs
- Focus at AMBER target

x (m), re12, re11, re16

Kick of the cavities

K^- and \overline{p} : intensities and fractions

- Atherton parametrization¹ to calculate number of particles
 - Parametrization of particle production measured by NA20
 - With $\frac{\Delta p}{p} = 1\%$
 - Angular acceptance of 17.6μsr
 - 1.5×10^{13} ppp on T6
 - 500mm Be-target
 - Distance between T6 and AMBER target of 1138m
 - Electrons are not considered
- 4.8×10^8 particles per spill allowed by RP

How to tune the phases

•
$$\theta_{\text{tot}} = \theta \left(\sin(\varphi(t)) + \sin(\varphi(t) + \alpha + \Delta \varphi_{12}) \right) = 2\theta \sin(\varphi(t) + \frac{\alpha + \Delta \varphi_{12}}{2}) \cos(\frac{\alpha + \Delta \varphi_{12}}{2})$$

- Tune $\Delta \varphi_{12}$, such that $\cos\left(\frac{\alpha+\Delta\varphi_{12}}{2}\right)=0$ for unwanted species
- For a K^- -beam we want the π^- and \overline{p} to be dumped
 - Therefore, we aim at $\Delta \phi_{\pi^-}^{\bar p} = 2\pi$
 - $\Delta \varphi_{12} = \pi \frac{2\pi fL}{c} \sqrt{1 + \left(\frac{m_{\pi}c}{p}\right)^2}$
 - Time that a π^- needs to fly from RF1 to RF2: $t_{\pi^-} = \frac{L}{\beta c} = \frac{L}{c} \cdot \frac{E}{pc} = \frac{L}{c} \sqrt{1 + \left(\frac{m_\pi c}{p}\right)^2}$
 - This can be translated to a phase in RF2: $\varphi_{\pi^-} = \frac{2\pi f L}{c} \sqrt{1 + \left(\frac{m_\pi c}{p}\right)^2}$

- Kick for π^- : $\theta_{\rm tot} \propto \cos\left(\frac{\Delta \varphi_{12} + \varphi_{\pi^-}}{2}\right) = \cos\left(\frac{\pi}{2}\right) = 0$; similar for \bar{p} as $\varphi_{\bar{p}} = \varphi_{\pi^-} + 2\pi$
- Kick for K^- : $\theta_{\mathrm{tot}} \propto \cos\left(\frac{\Delta \varphi_{12} + \varphi_{K^-}}{2}\right) = \sin\left(\frac{\pi f L}{c} \left(\sqrt{1 + \left(\frac{m_K c}{p}\right)^2} \sqrt{1 + \left(\frac{m_\pi c}{p}\right)^2}\right)\right) \neq 0$

Beam momentum

Kick in the first cavity

- SPS beam is extracted over a given time period
- Particles arrive at RF1 with all possible phases
- Angular distributions after RF1 look the same for all species
- Simulated with a maximal kick of $50^{\,\mathrm{MeV}/c}$ (\cong 1.5mrad) per cavity

Effect of the cavity kick

- In the cavity the angle increases linearly with z: $x'(z) = \frac{\frac{dp}{dz}}{p} \cdot z$
- Therefore, the offset increases quadratically with z: $x(z) = \frac{1}{2} \frac{dp}{dz} \cdot z^2 + x_0$
- At the end of the cavity, i.e. L_{tot} , the offset should be the cavity radius R at maximum:

$$x_0 = \frac{1}{2} \left(2R - \frac{\frac{\mathrm{d}p}{\mathrm{d}z}}{p} \cdot L_{\mathrm{tot}}^2 \right)$$

· Effectively usable aperture radius decreases to

$$\frac{1}{2} \left(30 \text{mm} - \frac{5 \text{ MeV/}_c / \text{m}}{70 \text{ GeV/}_c} \cdot 100 \text{m}^2 \right) \approx 11.4 \text{mm}$$

Model test in BDSIM

Absorption

Beams from SPS

08.11.2022

CMS