Quick update on status of CERN QTI

started in 2021, now about 1.5 years into 3 year program

covers four strands:

- Assess the areas of potential quantum advantage in HEP applications (QML, classification, anomaly detection, tracking)
- Develop common libraries of algorithms, methods, tools; benchmark as technology evolves
- Collaborate to the development of shared, hybrid classic-quantum infrastructures

Computing & Algorithms

- Identify and develop techniques for quantum simulation in collider physics, QCD, cosmology within and beyond the SM
- Co-develop quantum computing and sensing approaches by providing theoretical foundations to the identifications of the areas of interest

Simulation & Theory

- Develop and promote expertise in quantum sensing in low- and highenergy physics applications
- Develop quantum sensing approaches with emphasis on low-energy particle physics measurements
- Assess novel technologies and materials for HEP applications

Sensing, Metrology & Materials

currently: 2.5 PhD's + 0.5 new in 2023

- Co-develop CERN technologies relevant to quantum infrastructures (time synch, frequency distribution, lasers)
- Contribute to the deployment and validation of quantum infrastructures
- Assess requirements and impact of quantum communication on computing applications (security, privacy)

Communications & Networks

M. Doser / CERN

Progress update of CERN QTI:

Nov. I-4: QT4HEP conference: https://indico.cern.ch/event/1190278/

Theory, sensors: Nov. I

Caterina Braggio

Applications of superconducting technologies to particle detection

Oliver Buchmuller

Scaling up of atomic interferometers for the detection of dark matter

Piet Schmidt

Applying traps and clocks to the search for new physics

Ian Shipsey

Applications of quantum devices to HEP detectors

Steven Hoekstra

Molecular systems for tests of fundamental physics

Gianluca Cavoto

Development of detectors for ultra-low energy neutrinos

topics chosen to overlap with **CERN** focus and expertise

DM searches via RF, superconducting electronics, coatings, cavities

AION, MAGIS, ... DM searches via atom interferometers in vertical shafts

AD, ISOLDE: symmetry & BMS tests via precision spectroscopy

Quantum systems for HEP (novel or enhanced detectors)

AD, ISOLDE: symmetry & BMS tests via precision spectroscopy

neutrino physics at the low energy frontier (CNB)

involvement of QTI-funded doctoral students: quantum dots for scintillators, graphene for GEM's, DAQ from AMO

M. Doser / CERN

Quick update on status of CERN QTI

Next steps:

- 1) QTI: complete present (detector) R&D projects by end 2023/mid-2024
- in 2023: propose a fine-tuned follow-on to the first initiative with focus on a number of WP-like projects, with specific development goals in mind that leverage CERN expertise / infrastructure

close interaction
between TH & EXP

in 2023: the <u>implementation of the ECFA detector R&D roadmap</u> will also take place; DRD5 to be a collaboration for Quantum Sensing related detector R&D with a handful of WP-like projects

