Gamma-Factory-driven subcritical reactor – exploratory studies

Physics Beyond Colliders Annual Workshop, 9th Nov 2023

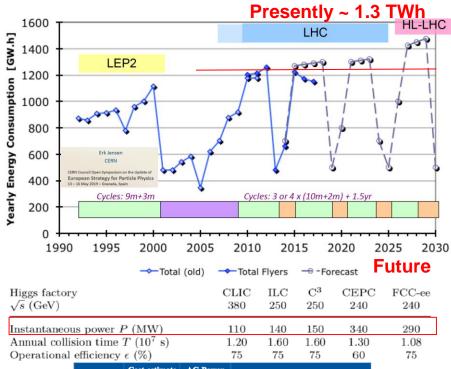
Mieczyslaw Witold Krasny,

LPNHE, CNRS, University Paris Sorbonne and CERN, BE-ABP

The context

Electricity prices (for CERN)

<u>Prix kWh</u>


• Present CERN regulated price (EDF):

~ 0.042 euro

(70% of CERN purchase with regulated tariff, till 2025)

- "Market price"
 - ~ 0.56 euro

Present and future power consumption at CERN

	Cost-estimate /BCHF	AC-Power /MW	Comments
Infrastructure	5.5		100km tunnel and surface infrastructure
FCC-ee	5	260-350	+1.1BCHF for the Top stage (365GeV)
FCC-hh	17	580	

Yardsticks(yearly consumption):

- FCC-ee(240) ~ **2 TWh**
- FCC-hh ~ **3.8 TWh**
- Canton Geneva ~ 2.8 TWh
- Mankind ~ 2 x 10⁴ TWh

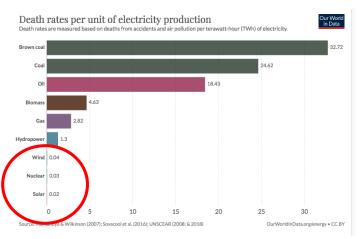
<u>Hypothetical Electricity cost HL-LHC(FCC-hh);</u>

- Regulated prices
- "Market price"
- Present ``unitarity" bound:

CERN yearly budget -- 1200 x 10⁶ euro /year !

- ~ 63 (160) x 10⁶ CHF/y
- ~ 840(2100) x 10⁶ CHF/y

The most stable response to the inevitable increase of the plug-power price and its present and future volatility, ...and to the risks of the power cuts **is to produce rather than to buy** the CERN-requisite plug power.


...a "sine qua non" condition for sustainable acceleratordriven research at CERN in the more-and-more unstable external environment?

Two necessary requirements: low carbon footprint and safe energy source

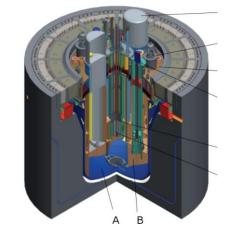
Carbon footprint

Options	Direct emissions Chain emissions		Biogenic CO ₂ emissions and albedo effect	Methane emissions	Lifecycle emissions (incl. albedo effect)				
	Min/Median/Max		Typical values						
Currently Commercially Available Technologies									
Coal—PC	670/760/870	9.6	0	47	740/820/910				
Gas—Combined Cycle	350/370/490	1.6	0	91	410/490/650				
Biomass—cofiring	n.a."	-	-	-	620/740/890				
Biomassdedicated	n.a. i	210	27	0	130/230/420				
Geothermal	0	45	0	0	6.0/38/79				
Hydropower	0	19	0	88	1.0/24/2200				
Nuclear	0	18	0	0	3.7/12/110				
Concentrated Solar Power	0	29	0	0	8.8/27/63				
Solar PV—rooftop	0	42	0	0	26/41/60				
Solar PV—utility	0	66	0	0	18/48/180				
Wind onshore	0	15	0	0	7.0/11/56				
Wind offshore	0	17	0	0	8.0/12/35				

Safety

Source: The Economist

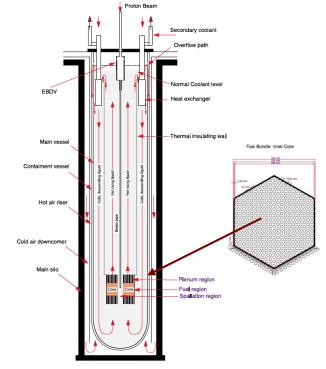
Best use of the CERN expertise



Accelerator driven nuclear energy (ADS)

Three conditions;

- requisite power for the present and future CERN scientific programme
- operation safety (a subcritical reactor)
- efficient transmutation of nuclear waste (very important societal impact if demonstrated at CERN – given its reputation)


Proton-beam-driven subcritical reactor studies

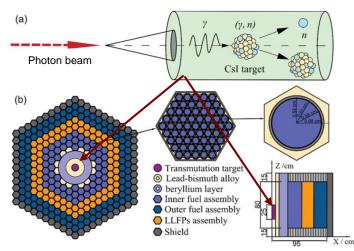
EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH CERN/AT/95-44 (ET)

CONCEPTUAL DESIGN OF A FAST NEUTRON OPERATED HIGH POWER ENERGY AMPLIFIER

C. Rubbia, J.A. Rubio, S. Buono¹), F. Carminati, N. Fiétier²), J. Galvez, C. Gelès, Y. Kadi, R. Klapisch, P. Mandrillon²), J.P. Revol and Ch. Roche

- Required proton beam power > 10 MW.
 (presently operating accelerators deliver up to 1 MW beams)
- Can photon beams be used instead of proton beams?

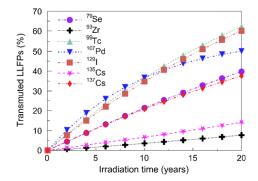
The challenge


Recent ``Nature" paper: Photon-beam-driven subcritical reactor

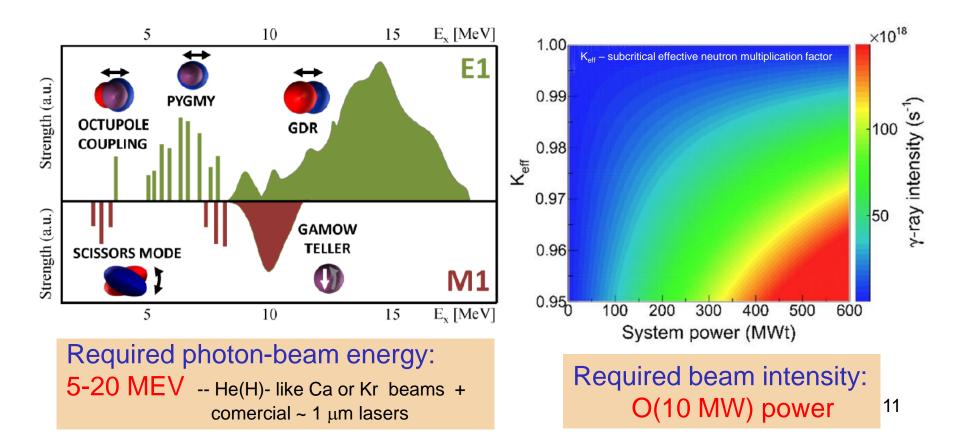
Article | Open Access | Published: 09 February 2022

Transmutation of long-lived fission products in an advanced nuclear energy system

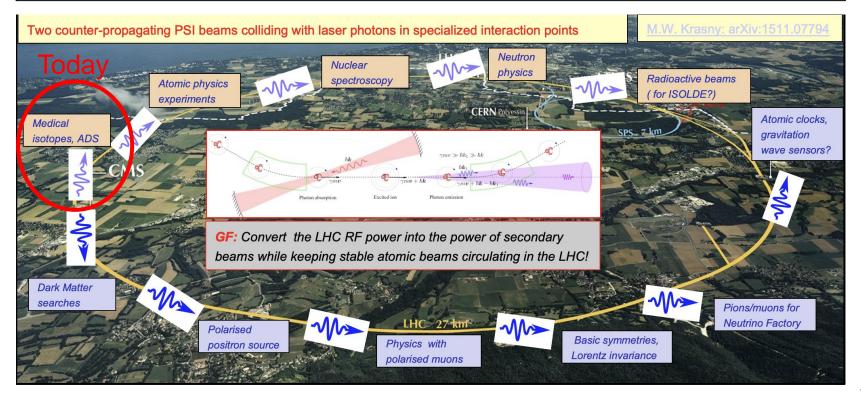
X. Y. Sun, W. Luo 🖂, H. Y. Lan, Y. M. Song, Q. Y. Gao, Z. C. Zhu, J. G. Chen 🖂 & X. Z. Cai


Scientific Reports 12. Article number: 2240 (2022) Cite this article

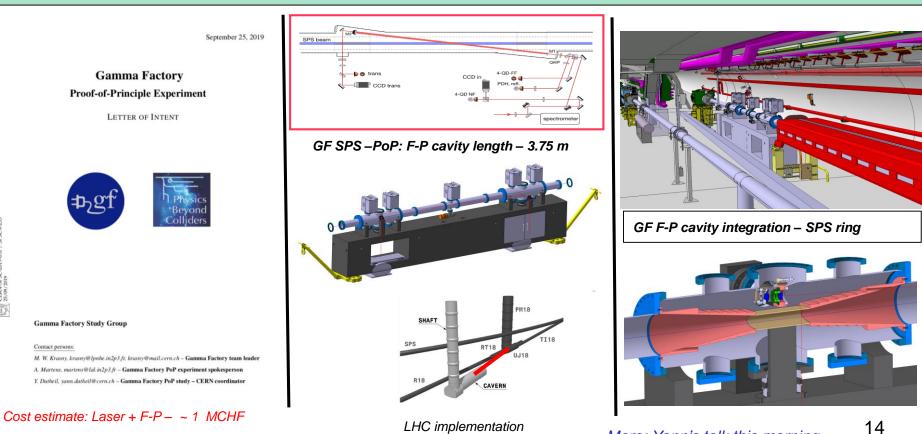
LLFP loaded material: Uranium dioxide pellets-fast breeder reactor core at 50 GWd/t Fuel: ²³⁵U


Main parameters	Data used in this study				
Type of fuel	UO ₂				
Thermal power (MWt)	500				
Electric power (MWe)	200				
Core height (mm)	1100				
Core diameter (mm)	1050				
Number of fuel assemblies	60/102 (inner/outer)				
Number of pins in each of fuel assembly	61				
Pin diameter (mm)	5.8				
Pellet diameter (mm)	5.2				
²³⁵ U enrichment (%)	23.3				
Number of LLFPs assemblies	78				
Number of pins in each of LLFPs assembly	61				
Number of shield assemblies	60				

Physical quantity	Value
Effective multiplication factor (k_{eff})	0.979
Reactivity (ρ)	-0.019
Effective multiplication factor for prompt neutrons (k_p)	0.977
Eigenvalue (α)	-0.003
Effective delayed neutron fraction (β_{eff})	0.007
Neutron generation time (Λ) (μ s)	0.523
Neutron worth of PNS (φ)	1.319
Sub-critical effective multiplication factor (k_s)	0.984


	Transmutation in CsI target (g/year)						
LLFPs	in photon field	in neutron field	in hybrid field				
¹²⁹ I	1.88×10^{3}	1.24×103	3.12×10^{3}				
135Cs	3.85×10^{2}	-0.70×10^{2}	3.15×10^{2}				
137Cs	9.25×10^{2}	-1.07×10^{2}	8.18×10^{2}				

Two principal gamma beam requirements



Can Gamma Factory deliver such a beam?

Gamma Factory

The FP cavity of the GF PoP experiment as a demonstrator

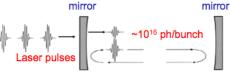
LHC implementation

More: Yann's talk this morning...

Three principal technical requirements

LHC RF power and circumferential voltage

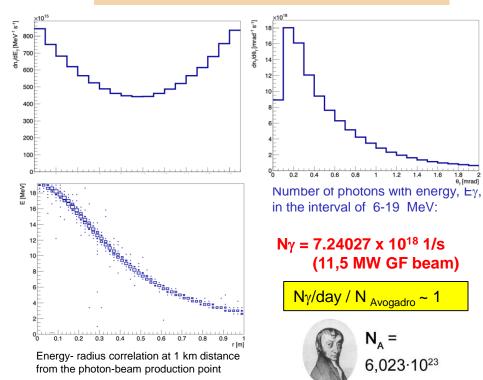
- Present RF power generated by sixteen 300kW/400MHz klystrons = 4.8 MW.
- → For the 10 MW photon beam the number of klystrons would have to be increased by a factor of 3
- NB. At LEP 2 forty four klystrons, each of 1.3 MW power \rightarrow 57 MW



- ♦ Present LHC circumferential voltage, cv, delivered by 8 cavities (two cryomodules) -- cv = 16 MV
- → For the 10 MW photon beam of <Eγ> =10 MeV, driven by He-like Ca ions, the cv over the LHC ring would have to be increased to: cv ~ 180 MV

```
NB. At LEP 2, cv = 3650 MV to compensate for the average ~ 3 GeV energy loss of each of the beam electron/positron per turn
```

Integrated laser pulses power



For the ideal case of 5mJ "Erbium laser" photon pulses (1550 nm), zero-degree crossing geometry, 10⁹ Ca+18 ions/bunch, and 500 ps long laser pulses GF – the maximal achievable photon rate would be ~10¹⁸ 1/s (10 MW beam of <E_Y> =10 MeV photons requires 6.3 x 10¹⁸ γ /s)

- For 10 MW photon beam the number of laserpulse-PSI-beam crossing points over the LHC straight section would have to be increased...
- ightarrow special design and its full simulation needed

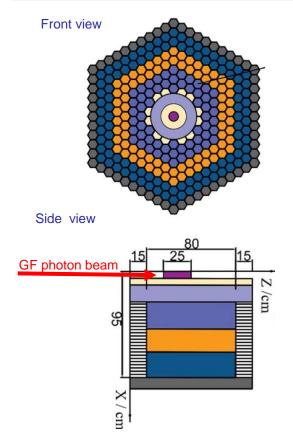
Optimisation studies: GF beam and laser pulses parameters and their collision optics

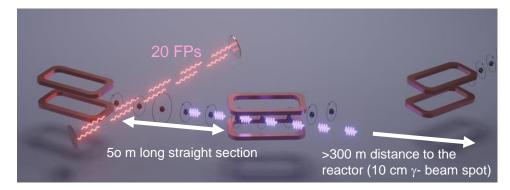
20 GF-PoP –like FP cavities

- + Ca+18 beam parameters at IP
- Energy
- Number of ions/bunch
- Transverse Distribution
- Beta (x,y)
- Emittance (x,y)
- R.m.s. beam size (x,y)
- Gaussian tail cut off
- R.m.s. Bunch length
- E distribution
- Relat. energy spread

+ Laser parameters at IP (Erbium laser)

- Wavelength
- Photon energy
- Peak power density
- Pulse energy (FP)
- Time profile of pulse
- R.m.s. pulse length
- Spatial profile of pulse
- Rayleigh length
- R.m.s beam size at focus


- 9.107D+13 eV 1.0000D+09 Gaussian 5.000D+01 5.000D+01 m 3.000D-10 3.000D-10 rad.m 125.5 125.5 μm 3.50 3.50 sigma 1.500D-02 m Gaussian 2.000D-04 1.55000 micron 0.799898 eV 3.527D+13 Watt/m**2
- 4.987D-03 Joule
- Gaussian
- 29.9792 mm
- Gaussian
- 729.6602 mm
- **300.00 300.00** μm
- + PSI-bunch laser pulse crossing angle 1 deg


Alternative scenario: Ytterbium laser - second harmonics of the PoP laser, He -like Krypton beam, $E_{max} = 28 \text{ MeV}$

16

Next steps

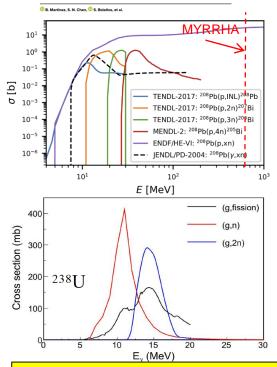
Optimisation of the GF-beam-driven reactor – on-going simulation studies

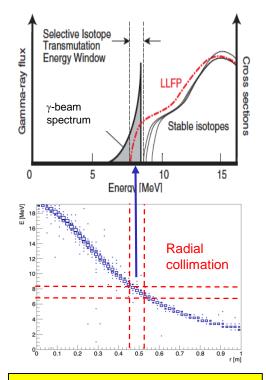
- Optimisation of the overall layout of the system
- Optimisation of photo-neutron source
- Neutron transport
- Transmutation efficiencies

Collaboration with Prof. Wen Luo group:

School of Nuclear Science and Technology, University of South China, Hengyang

Why photons rather than protons?




Proton-beam-driven and photon-beam driven subcritical reactors:

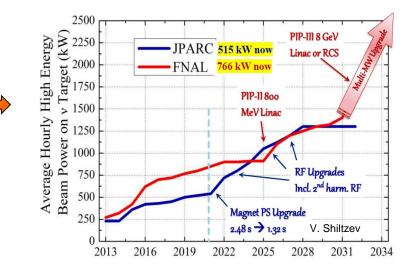
1) transmutation potential

Cite as: Matter Radiat. Extremes 7, 024401 (2022); https://doi.org/10.1063/5.0060582 Submitted: 20 June 2021 • Accepted: 30 November 2021 • Published Online: 27 December 2021

Comparable neutron-driven transmutation capacity per MW of the beam power

Photon beam -- unique fission surgery tool for photon-driven transmutation

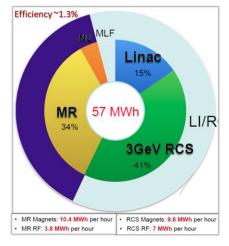
Table 1. Particle threshold energies and residual nuclei for even-Z elements including LLFPs.


Isotopes	T _{1/2}	E (MeV)	R.I.	T _{1/2}	Isotopes	T _{1/2}	E (MeV)	R.I.	T _{1/2}
⁹⁰ Zr	-	8.355(p)	⁸⁹ Y	-	133Cs	-	6.085(p)	¹³² Xe	-
⁹¹ Zr	-	7.195(n)	90Zr	-			8.987(n)	132Cs	6.5 d
⁹² Zr	-	8.634(n)	⁹¹ Zr	-	135Cs	2.3×10 ⁶ y	6.751(p)	¹³⁴ Xe	-
93Zr	1.61×10 ⁶ y	6.734(n)	⁹² Zr	-			8.762(n)	¹³⁴ Cs	2.0 y
⁹⁴ Zr	- '	8.220(n)	⁹⁴ Zr	1.61×10 ⁶ y	¹³⁷ Cs	30 y	7.416(p)	¹³⁶ Xe	-
⁹⁶ Zr	-	7.854(n)	⁹⁵ Zr	64 d			8.278(n)	¹³⁶ Cs	13.2 d
⁷⁶ Se	-	9.508(p)	⁷⁵ As		127	-	6.206(p)	¹²⁶ Te	-
⁷⁷ Se	-	7.418(n)	⁷⁶ Se	-	@		9.143(n)	126	13.1 d
⁷⁸ Se	-	10.399(n)	⁷⁷ Se	-	129	1.57×10 ⁷ y	6.799(p)	¹²⁸ Te	-
⁷⁹ Se	2.95×10 ⁵ y	6.914(n)	⁷⁸ Se	-			8.833(n)	128	25 m
⁸⁰ Se	- 1	9.914(n)	⁷⁹ Se	2.95×10 ⁵ y	00-			08	
⁸² Se	-	9.276(n)	⁸¹ Se	18 m	⁹⁹ Tc	2.11×10 ⁵ y	6.500(p) 8.967(n)	⁹⁸ Mo ⁹⁸ Tc	- 4.2×10 ⁶ y
¹⁰⁴ Pd	-	8.658(p)	¹⁰³ Ph	-					
¹⁰⁵ Pd	-	7.941(n)	¹⁰⁴ Pd	-					
¹⁰⁶ Pd	-	9.347(p)	¹⁰⁵ Rh	1.47 d					
¹⁰⁷ Pd	6.5×10 ⁶ y	6.359(n)	106Pd	-					
¹⁰⁸ Pd	- 1	9.221(n)	¹⁰⁷ Pd	6.5×10 ⁶ y					
110 Pd	-	8.861(n)	¹⁰⁹ Pd	13.7 h					
¹¹⁷ Sn	-	6.945(n)	¹¹⁶ Sn	-					
¹¹⁸ Sn	-	9.327(n)	117Sn	-					
¹¹⁹ Sn	-	6.485(n)	118 Sn	-					
¹²⁰ Sn	-	9.107(n)	¹¹⁹ Sn	-					
122 Sn	-	8.814(n)	¹²¹ Sn	27 h					
¹²⁴ Sn	-	8.488(n)	¹²³ Sn	40 m					
¹²⁶ Sn	2.3×10 ⁵ y	8.193(n)	¹²⁵ Sn	9.6 d					
⁸⁸ Sr	-	10.614(p)	⁸⁷ Rb	-					
⁹⁰ Sr	28.8 y	7.806(n)	⁸⁹ Sr	50.6 d					

Proposal for selective isotope transmutation of long-lived fission products using quasimonochromatic γ -ray beams

Takehito Hayakawa, Shuji Miyamoto, Ryoichi Hajima, Toshiyuki Shizuma, 20 Sho Amano, Satoshi Hashimoto & Tsuyoshi Misawa

Proton-beam-driven and photon-beam driven subcritical reactors: (2) cost and operation aspects

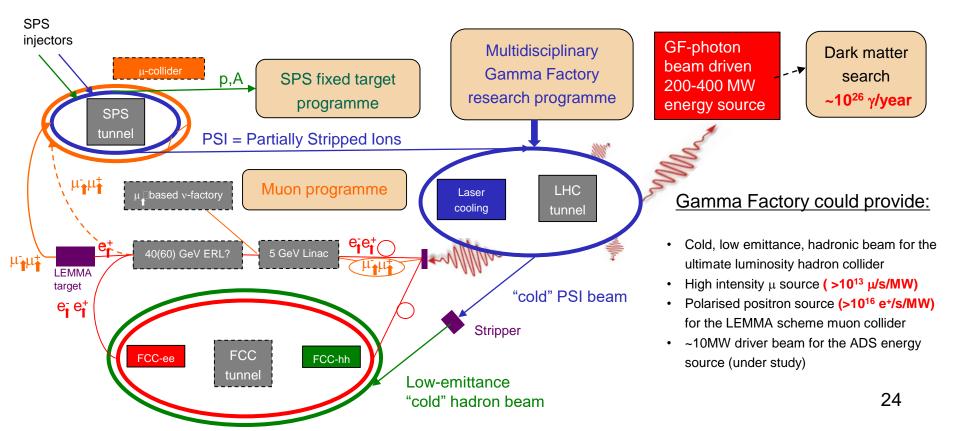

- ✓ There is no apparent showstopper to create at CERN the O(10) MW photon beam – if based on the Gamma Factory concept
- ✓ Building of O(10) MW proton accelerator driver represents a technological challenge (presently < 1 MW, up to 2.4 MW planned for the future MYRRHA project)
- ✓ Its cost (likely >10⁹ CHF) would be comparable to the cost of a subcritical nuclear reactor construction
- ✓ The 10 MW photon beam driver accelerator already exists (LHC). Cost of the laser stations negligible... but the operation aspects by far more complicated – practical only if associated with a broad multidisciplinary research programme with the Gamma Factory photon beams?
- Important aspect: GF photon beam is quasi continuous (20 MHz repetition rate) – very useful for the neutron flux stability(sub-criticality)

Proton-beam-driven and photon-beam driven subcritical reactors: (3) plug power efficiency

Proton beam J-PARC

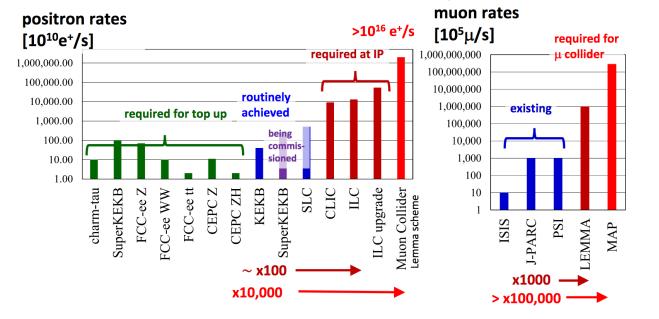
J-PARC : 0.5 MW beams vs ~40 MW site power

Efficiency = 1.3 %


Photon beam CERN-GF

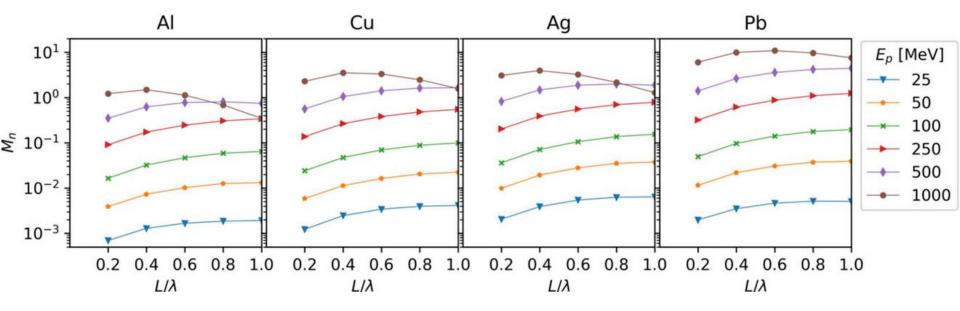
- beam lifetime 10 h (plug power necessary to ramp the PSI beam to requisite energy negligible)
- beam power efficiency = beam power/ RFpower > 90 %
 NB.(DESY FEL beam power efficiency - 0.1 %)
- overall energy efficiency = beam power/(LHC cryogenic power +RF power) = 10 MW /(10MW +40MW) = 20%

Efficiency ~ 20 %


Outlook

Potential GF role in an incremental, sustainable, and multidisciplinary development of the research infrastructure at CERN

Supplementary slides


GF – presently the only technology capable to deliver the requisite power polarised positron source for the CLIC, ILC and for the Lemma scheme muon collider

Frank Zimmermann – CERN seminar on challenges for future colliders

<u>Gamma Factory:</u> $N_{e+} > 10^{16}$ 1/s/MW, $N\mu + = N\mu - > 10^{13}$ 1/s/MW

Neutrons per proton

Energy footprint of photon beams : DESY-XFEL example

DESY-XFEL

- Wall-pug power 19 MW
- Driver beam power consumption 600 kW
- Photon beam power 600 W
- beam power efficiency ~ 0.1 %
- overall plug-power consumption efficiency ~ 0.003 % (thanks to Andrea Latina for these numbers)

		Relative composition (wt%)		Neutrons capture cross section at	(y, n) parar	(y, n) parameters			
Element	Isotope		Natural half-life $(T_{1/2})$	0.025 eV (barn)	Eth (MeV)	Г (MeV)	E _{max} (MeV)	σ _{max} (mbarn)	
	⁷⁶ Se	1.4×10^{-4}	Stable	85.02	11.15	7.0	15.01	107	
	⁷⁷ Se	0.032	Stable	41.33	7.52	5.2	17.04	141	
e -	⁷⁸ Se	0.064	Stable	50.02	10.50	6.0	16.01	122	
Se	⁷⁹ Se	0.096	3.27×10 ⁵ a	11.81	6.96	5.0	17.04	150	
	⁸⁰ Se	0.190	Stable	0.59	9.91	5.0	16.01	128	
	⁸² Se	0.410	Stable	0.04	9.28	4.0	16.00	142	
	90Zr	0.190	Stable	0.01	11.97	4.5	17.00	192	
	⁹¹ Zr	6.790	Stable	1.30	7.19	4.5	17.00	182	
	92Zr	8.060	Stable	0.23	8.63	3.2	16.01	159	
Zr	⁹³ Zr	8.590	1.53×10 ⁶ a	2.24	6.73	4.0	15.00	141	
	⁹⁴ Zr	8.750	Stable	0.05	8.22	3.0	15.03	130	
	⁹⁵ Zr	0.940	64.032 d	8.11	6.46	3.5	14.99	134	
	⁹⁶ Zr	8.940	2.0×10 ¹⁹ a	0.02	7.85	4.5	14.98	103	
Tc	99Tc	8.370	2.11×10 ⁵ a	22.80	8.97	3.7	15.99	202	
	104Pd	7.6×10 ⁻⁵	Stable	0.65	10.00	4.8	16.00	220	
	105Pd	2.480	Stable	21.08	7.09	4.2	15.98	221	
Pd	106Pd	0.800	Stable	0.30	9.56	4.0	15.98	228	
Pu	¹⁰⁷ Pd	0.820	6.5×10 ⁶ a	9.53	6.54	4.0	15.98	232	
	108Pd	0.380	Stable	8.57	9.22	4.1	15.98	194	
	109Pd	0.120	13.701 h	24.20	6.15	3.8	16.01	208	
I	¹²⁷ I	0.590	Stable	6.15	9.14	5.0	15.03	253	
1	¹²⁹ I	1.870	1.57×10 ⁷ a	30.29	8.99	5.0	15.56	300	
	133Cs	14.200	Stable	30.36	9.00	5.0	15.50	314	
	134Cs	0.520	2.065 a	140.02	6.99	4.5	15.10	312	
Cs	135Cs	13.200	2.30×10 ⁶ a	8.41	8.78	4.5	15.00	316	
	¹³⁶ Cs	0.012	13.16 d	13.36	6.83	4.0	15.02	322	
	137Cs	13.500	30.08 a	0.27	8.30	3.5	15.00	325	

Article | Open Access | Published: 09 February 2022

Transmutation of long-lived fission products in an advanced nuclear energy system

<u>X. Y. Sun, W. Luo</u> 🖂, <u>H. Y. Lan, Y. M. Song, Q. Y. Gao, Z. C. Zhu, J. G. Chen</u> 🖂 & <u>X. Z. Cai</u>