Vision Transformer based Hadronic Tau Identification for the Dual-Readout Calorimeter

Youngwan Son, University of Seoul
On behalf of the Korea Dual-Readout Calorimeter R&D team
IDEA meeting, 9th Mar 2022
Introduction

This work aims to develop τ lepton identification based on dual-readout calorimeter image via deep learning, “Vision Transformer”.

* Investigate DRC standalone information potential for τ lepton identification.
* Vision Transformer (ViT) based classification of hadronic τ decays and QCD jets.

<table>
<thead>
<tr>
<th>Tau Branching ratio</th>
<th>$\pi^- \nu_\tau$</th>
<th>$\pi^- \pi^0 \nu_\tau$</th>
<th>$\pi^- 2\pi^0 \nu_\tau$</th>
<th>$\pi^- \pi^+ \pi^- \nu_\tau$</th>
<th>$\pi^- \pi^+ \pi^- \pi^0 \nu_\tau$</th>
</tr>
</thead>
<tbody>
<tr>
<td>τ</td>
<td>10.91</td>
<td>25.51</td>
<td>9.29</td>
<td>9.00</td>
<td>2.70</td>
</tr>
</tbody>
</table>
WHY WE NEED DEEP LEARNING?
Universal Approximation Theorem: Neural Networks (NN) with Activation function (Nonpolynomial/Nonlinear function) can be universal approximated to any function like takes a number image as an input and tell the number as output.

-> That’s a strong guarantee for using NN, but the people didn’t know “how to approximate”, and that methodology is “Deep Learning”.

HOW TO APPROXIMATE?
1. Define loss function, which can represent a difference between model’s prediction about an input and wanted output.
2. Minimize loss function by gradient descent algorithm, which is an iterative optimization for finding the minimum of a function.
3. Back-propagate the error from the loss function to the Neural Network’s parameters by calculating each partial derivative of the loss function with respect to each parameter.
Simulate e^+e^- beam at 91.2 GeV (Z boson mass) with decaying to $Z \to q\bar{q}$ or $Z \to \tau^-\tau^+$ with dual-readout v0.0.1 simulation software.

* Options : $|\eta| < 1.15$ for final state particles, No magnetic field applied.
* Five dominant hadronic decays of τ^\pm are identification target with QCD jets from $Z \to q\bar{q}$.

Cluster and generate 256x256 images about each type of fibers.

* Geometry : $(\Delta \theta, \Delta \phi) = (0.5,0.5)$ with respect to the center of jet cluster
* Pixel information : Energy of Cherenkov and Scintillation channel
* A pixel is not one-to-one corresponded to a fiber. Just fill 256x256 ROOT::TH2F of the $(\Delta \theta, \Delta \phi) = (0.5,0.5)$ region.
Transformer network is originated from sequential data processing without RNN (“Attention is all you need”).

Vision Transformer (ViT) takes sequential patches of image as input, and it learns the relations between each patches.

Transformer based models are beating up Convolutional models for many vision tasks. (i.e. **Image classification**, **Object detection**)

Is there any ViT application in HEP? -> Nothing (yet).
Patch Embedding block
Key feature >> einops.layers.keras.Rearrange('b (h s1) (w s2) c -> b (h w) (s1 s2 c)', s1=patch_size, s2=patch_size)
* Map 2D image ($x_p \in \mathbb{R}^{H\times W\times C}$) to Patch embedding ($x_p \in \mathbb{R}^{N\times(P^2\times C)}$).
* i.e.) Height (H) = h*s1 = 256, Width (W) = w*s2 = 256, Channel (C, Cherenkov&Scintillation) = 2, patch_size(P) = 32
 * Number of patches (N) = HW/P^2 = 64 (Same with upper image of patches)
* After this layer, tensorflow.keras.layers.Dense (Linear projection) takes the patch embedding and map to linear embedding.

Minor Features : They are implemented by tensorflow.Variable().
* [CLS] token : It is introduced in BERT paper for classification task of transformer. It learns aggregate representation of a image.
* Position embedding : Patch embedding loses its spatial information. It learns original positions of the patches.
Tau Identification - Vision Transformer

Transformer Encoder block
Repeat this block L times, the L is given by developer.
Key feature >> `tf.keras.layers.MultiHeadAttention(num_heads=8, key_dim=emb_size, ...)`
* Do multi-head **self-attention** to the embedding (Patch Embedding block output).
* After this layer, MLP takes the output and upsample it to higher dimension and downsample to the original dimension (emb_size).

Attention map visualization -> Attention layer knows where to pay attention!

Minor features:
* **GELU**: $GELU(x) = x\Phi(x)$ where Gaussian CDF $\Phi(x)$ -> Differentiable for every point, not monotone increasing.
* **Layer Normalization**: Normalization with stability for small batch size -> enables smoother gradients, etc.
Classification Head

Key feature >> tensorflow.keras.layers.Dense(n_classes, activation='softmax')

* It takes reduced tensor (reduce $P^2C + 1$ dimension by taking mean along to the axis.), and map to the probability vector.

* For the probability vector, each elements mean the probability of each decays.

 * i.e.) $[\pi^+\nu_\tau, \pi^+\pi^+\pi^+\nu_\tau, \pi^+\pi^+\pi^+\pi^0\nu_\tau, \pi^+\pi^0\nu_\tau, \pi^+2\pi^0\nu_\tau, q\bar{q}] \rightarrow [0.95, 0.01, 0.01, 0.01, 0.01, 0.01]$

 * The prediction is $\pi^+\nu_\tau$.

Tau Identification - Vision Transformer

![Diagram of Vision Transformer](image)
Hyperparameter optimization was done by optuna, which is based on tree-structured Parzen estimator.

Two step tuning
1. Model structure
 * depth (L) : The number of repetition of transformer layer
 * emb_size : Size of embedding
 * patch_size : Size of rectangular patches for (256, 256) image
 * The best hyper parameter set for 100 trials of 20 epochs
 * (depth, emb_size, patch_size) = (1, 640, 16)

2. Hyperparameters for training
 * batch_size : Input tensor shape -> (batch_size, 256, 256, 2)
 * lr : Learning rate, step size at each iteration while moving to the minimum of loss function
 * The best hyper parameter set for 100 trials of 20 epochs
 * (batch_size, lr) = (60, 0.001041)
Hyperparameter optimized model

Patch Embedding -> patch_size=16, emb_size=640
-> 257 = Number of patches + [CLS] Token = (256/16)^2 + 1

Transformer -> depth (=L)=1
-> MLP upsamples the attention output (4 times), and then downsamples to original dimension. -> 2560 = 640 × 4

Classification head

Loss is simple categorical cross-entropy. Adam optimizer is used for gradient descent. Train with 260,000 (image, label)
* Test with 19,920 images, equipartite with each decay modes.
* Each row of confusion matrix represents actual class, and each column of confusion matrix represents predicted class.
* $Z \rightarrow q\bar{q}$, main background of hadronic τ identification is identified truly more than 99.5%.
* Average accuracy of the identifier is more than 97.7%.
Summary & Plan

* Achieve nice performance of τ lepton identification task with standalone (DRC info. only) by Vision Transformer model.
 * 97.8% (total) accuracy for the 6-class classification of QCD jets and five hadronic τ decays.
 * Can discriminate QCD jets with 99.5% accuracy.

* We have a plan to apply this for Physics case like H-$\rightarrow$$\tau^-\tau^+$ in FCC-ee Higgs boson (ZH) production.
* Attention map visualization may give us intuition and interpretability, so I’m working in.
Back up
1. The cartoon shows how to calculate the attention value about the sentence “I am a student” by matrix multiplication.

2. Self-attention calculates the similarities between each word, so it finds “it” is highly associated with “animal”.

The cartoons show how to calculate the attention value about the sentence “I am a student” by matrix multiplication. Self-attention calculates the similarities between each word, so it finds “it” is highly associated with “animal”.