Observation of *CP* violation in charmless three-body B^{\pm} meson decays at LHCb

LHCb-PAPER-2021-049 LHCb-PAPER-2021-050

Diego Torres Machado

Centro Brasileiro de Pesquisas Físicas on behalf of the LHCb collaboration

March 15, 2022 CERN seminar

The LHCb detector

□ 1973: CP violation can not be explained in a four-quark model

- \rightarrow Introduction of the Cabibbo-Kobayashi-Maskawa matrix
- \rightarrow It describes the probability of flavour transition

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \simeq \begin{pmatrix} 1 - \lambda^2/2 & \lambda & \lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ \lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} \quad \lambda \approx 0.23$$

□ 1973: CP violation can not be explained in a four-quark model

- \rightarrow Introduction of the Cabibbo-Kobayashi-Maskawa matrix
- \rightarrow It describes the probability of flavour transition

Exa

$$Wolfenstein parametrisation \qquad Phys. Rev. Lett. 51 (1983) 1945$$

$$V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \simeq \begin{pmatrix} 1 - \lambda^2/2 & \lambda & \lambda^3(\rho - i\eta) \\ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \\ \lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} \quad \lambda \approx 0.23$$

$$Molfenstein parametrisation \qquad Phys. Rev. Lett. 51 (1983) 1945$$

$$K^{-} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ \lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} \quad \lambda \approx 0.23$$

$$W_{ub} = \begin{pmatrix} V_{us} & \sqrt{u} \\ V_{ub} & \sqrt{u} \\ W_{ub} & W_{ub} \end{pmatrix} \quad X \approx 0.23$$

$$V_{ub} = \begin{pmatrix} V_{us} & \sqrt{u} \\ V_{ub} & \sqrt{u} \\ W_{ub} & W_{ub} \end{pmatrix} \quad X \approx 0.23$$

 \rightarrow complex phase in V_{CKM} are necessary to observe CP violation

→ Deviations from SM predictions probe new interactions

To observe *CP* violation: at least 2 interfering amplitudes must contribute to the same final state with different weak and strong phases

$$A_{CP} = \frac{|A(B \to f)|^2 - |A(\bar{B} \to \bar{f})|^2}{|A(B \to f)|^2 + |A(\bar{B} \to \bar{f})|^2} = \frac{2|A_2/A_1|\sin(\delta_1 - \delta_2)\sin(\phi_1 - \phi_2)}{1 + |A_2/A_1|^2 + |A_2/A_1|\cos(\delta_1 - \delta_2)\cos(\phi_1 - \phi_2)}$$

The size of the CP asymmetry depends also on the relative magnitude of the amplitudes

Weak phases: CKM matrix elements

□ Strong phases:

- (i) Short distance penguin contributions at quark level
- (ii) Final-state interactions (example: hadronic rescattering $\pi\pi \leftrightarrow KK$, 1-1.5 GeV)

CPT contraints on **CP** violation

- $\Box CP \text{ violation: } \Gamma(P \to f) \Gamma(\bar{P} \to \bar{f}) \neq 0$
- $\hfill\square$ CPT symmetry: total decay widths of P and \bar{P} are the same

$$\Gamma(P \to f_1) + \ldots + \Gamma(P \to f_n) = \Gamma(\bar{P} \to \bar{f}_1) + \ldots + \Gamma(\bar{P} \to \bar{f}_n)$$

 \rightarrow requires communication between the different decay modes having the same quantum numbers

- Final-state hadronic interactions:
- \rightarrow provide the strong phases for CP violation to be observed
- \rightarrow is a key ingredient to preserve CPT symmetry

source: Juan Otalora

CP violation from interferences between:

- Tree penguin diagrams
- Resonances in the phase space

Three-body decays in the phase space

Multi-body decays proceed through several intermediate states which <u>interfere</u>

Density distribution in a 3-body decay

$$d\Gamma = \frac{1}{(2\pi)^3} \frac{1}{32M^3} |\mathscr{M}|^2 dm_{12}^2 dm_{23}^2$$
$$m_{ij}^2 = (E_i + E_j)^2 - (p_i + p_j)^2$$

→ m_{12}^2 and m_{23}^2 enough to describe the system → Dynamic is contained in the matrix \mathcal{M} → Information about resonant structure

Three-body decays in the phase space

Resonant process: horizontal, vertical, diagonal bands
 Spins: density distribution along bands
 Non-resonant process

π

Event selection strategy

- Multivariate analysis selection
 - → Training performed specific for each decay channel
- Final PID selection (crossfeed only)
- $\rightarrow B^+ \rightarrow \bar{D}^0 K^+(\pi^+)$ to define the cut values
- **Charm veto (** D^0 , J/ψ **)**

Fit model

Simultaneous mass fit of B^+ and B^- for each channel

Signal

Fit observables Signal yield Raw asymmetry $A_{RAW} = \frac{N^- - N^+}{N^- + N^+}$

- → Two Crystal-Ball + Gaussian. Shape determined by MC
- Combinatorial background
 - → Exponential function
- Partially reconstructed background
 - → Argus function convolved with a Gaussian
- **C**rossfeed from other $B^{\pm} \rightarrow h^{\pm}h^{+}h^{-}$ decays

→ Two Crystal-Ball functions. Shape and fractions determined by MC and fixed in the fit.

→ MC samples with selection cuts and PIDCalib efficiency.

Fit results

Phase-space integrated asymmetries

U-spin symmetry

Results:

$$\frac{\Delta\Gamma(B^{\pm} \to \pi^{\pm}K^{+}K^{-})}{\Delta\Gamma(B^{\pm} \to K^{\pm}\pi^{+}\pi^{-})} = \frac{A_{CP}(B^{\pm} \to \pi^{\pm}K^{+}K^{-})\mathscr{B}(B^{+} \to \pi^{+}K^{+}K^{-})}{A_{CP}(B^{\pm} \to K^{\pm}\pi^{+}\pi^{-})\mathscr{B}(B^{+} \to K^{+}\pi^{+}\pi^{-})} = -0.92 \pm 0.18$$
$$\frac{\Delta\Gamma(B^{\pm} \to \pi^{\pm}\pi^{+}\pi^{-})}{\Delta\Gamma(B^{\pm} \to K^{\pm}K^{+}K^{-})} = \frac{A_{CP}(B^{\pm} \to \pi^{\pm}\pi^{+}\pi^{-})\mathscr{B}(B^{+} \to \pi^{\pm}\pi^{+}\pi^{-})}{A_{CP}(B^{\pm} \to K^{\pm}K^{+}K^{-})\mathscr{B}(B^{+} \to K^{+}K^{+}K^{-})} = -1.06 \pm 0.08$$

In agreement with the predictions

- □ $B^{\pm} \rightarrow h^{\pm}h^{+}h^{-}$ decays: rich environment for the study of *CP* violation
- Large phase-space available
- Different sources contributing to the asymmetries
- \rightarrow interferences between tree and penguin diagrams
- \rightarrow interferences involving quasi-two-body resonances
- \rightarrow hadronic final-state interactions

Histogram created by an adaptative binning algorithm

- **\Box** Each bin contains the same number of events ($N^- + N^+$)
- The vertical color scale tells us the asymmetry value

 $A_{CP} = +0.303 \pm 0.009$

 $A_{CP} = -0.284 \pm 0.017$

 $m(\pi^{-}\pi^{+}\pi^{-})$ [GeV/c²]

 $A_{CP} = +0.745 \pm 0.027$

D No *CPV* expected in $\chi_{c0}(1P)$ in SM

 CPV could arise from interference with a nonresonant decay amplitude

Phys. Rev. Lett. 74 (1995) 4984

 $m(\pi^{+}\pi^{+}\pi^{-})$ [GeV/ c^{2}]

 $A_{CP} = +\ 0.097 \pm 0.031$

Mass fit models

- → Combinatorial background model: Exponential → polynomial
- → Peaking background asymmetry: Fixed to zero → fixed to Phys. Rev. D90 (2014) 112004
- → Peaking background model: Varying $\pm 1\sigma$ obtained from MC
- → Signal model: 1 Gauss + 2 Crystal Ball → 1 Gauss + 2 RooGaussExp

Dalitz plot efficiency

- \rightarrow Distribution of the *R* factor by randomizing the efficiency map bins
- → Different binning for the efficiency maps

Control channel

- → Fit parameters float
- → Split regions in bins of momentum, magnet polarity

Phase space integrated asymmetries

 $(\text{stat}) \quad (\text{syst}) \quad (J/\psi K^{\pm})$ $A_{CP}(B^{\pm} \to K^{\pm} \pi^{+} \pi^{-}) = +0.011 \pm 0.002 \pm 0.003 \pm 0.003 \text{ (2.4}\sigma)$ $A_{CP}(B^{\pm} \to K^{\pm} K^{+} K^{-}) = -0.037 \pm 0.002 \pm 0.002 \pm 0.003 \text{ (8.5}\sigma)$ $A_{CP}(B^{\pm} \to \pi^{\pm} \pi^{+} \pi^{-}) = +0.080 \pm 0.004 \pm 0.003 \pm 0.003 \text{ (14.1}\sigma)$ $A_{CP}(B^{\pm} \to \pi^{\pm} K^{+} K^{-}) = -0.114 \pm 0.007 \pm 0.003 \pm 0.003 \text{ (13.6}\sigma)$

First observation of CPV in $B^{\pm} \to K^{\pm}K^{+}K^{-}$ and $B^{\pm} \to \pi^{\pm}\pi^{+}\pi^{-}, B^{\pm} \to \pi^{\pm}K^{+}K^{-}$ confirmed

$$(\text{stat}) \quad (\text{syst}) \quad (J/\psi K^{\pm})$$
$$\mathcal{A}_{CP}(B^{\pm} \to K^{\pm} \pi^{+} \pi^{-}) = +0.025 \pm 0.004 \pm 0.004 \pm 0.007$$
$$\mathcal{A}_{CP}(B^{\pm} \to K^{\pm} K^{+} K^{-}) = -0.036 \pm 0.004 \pm 0.002 \pm 0.007$$
$$\mathcal{A}_{CP}(B^{\pm} \to \pi^{\pm} \pi^{+} \pi^{-}) = +0.058 \pm 0.008 \pm 0.009 \pm 0.007$$
$$\mathcal{A}_{CP}(B^{\pm} \to \pi^{\pm} K^{+} K^{-}) = -0.123 \pm 0.017 \pm 0.012 \pm 0.007$$

Comparison with run1 results

Regions of the phase space

$B^{\pm} \to \pi^{\pm}\pi^{+}\pi^{-}$	$N_{ m sig}$	$A_{ m raw}$	A_{CP}	_
Region 1	14340 ± 150	$+0.309 \pm 0.009$	$+0.303 \pm 0.009 \pm 0.004 \pm 0.003$	(29.9 σ)
Region 2	4850 ± 130	-0.287 ± 0.017	$-0.284 \pm 0.017 \pm 0.007 \pm 0.003$	(15.2 <i>σ</i>)
Region 3	4730 ± 170	$+0.196 \pm 0.019$	$+0.211 \pm 0.019 \pm 0.043 \pm 0.003$	(4.5 σ)
Region 4	2270 ± 60	$+0.747 \pm 0.027$	$+0.745 \pm 0.027 \pm 0.018 \pm 0.003$	(23.0 <i>σ</i>)
$B^{\pm} \to K^{\pm} \pi^+ \pi^-$				_
Region 1	41980 ± 280	$+0.201 \pm 0.005$	$+0.217 \pm 0.005 \pm 0.005 \pm 0.003$	(27.3 σ)
Region 2	27040 ± 250	-0.149 ± 0.007	$-0.145 \pm 0.007 \pm 0.006 \pm 0.003$	(15.0 <i>σ</i>)
$B^{\pm} \to \pi^{\pm} K^+ K^-$				_
Region 1	11430 ± 170	-0.363 ± 0.010	$-0.358 \pm 0.010 \pm 0.014 \pm 0.003$	(20.2 σ)
Region 2	2600 ± 120	$+0.075 \pm 0.031$	$+0.097 \pm 0.031 \pm 0.005 \pm 0.003$	(3.1 <i>σ</i>)
$B^{\pm} \to K^{\pm}K^{+}K^{-}$				-
Region 1	76020 ± 350	-0.189 ± 0.004	$-0.178 \pm 0.004 \pm 0.004 \pm 0.003$	(28.3 σ)
Region 2	37440 ± 320	$+0.030 \pm 0.005$	$+0.043 \pm 0.005 \pm 0.004 \pm 0.003$	(6.3 σ)

Huge localised asymmetry of ~75% in $B^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-}$

Regions of the phase space

B^{\pm}	$\pi^{\pm} \to \pi^{\pm} \pi^{+} \pi^{-}$	$N_{ m sig}$	$A_{ m raw}$	A_{CP}	-
	Region 1	14340 ± 150	$+0.309 \pm 0.009$	$+0.303 \pm 0.009 \pm 0.004 \pm 0.003$	(29.9 σ)
	Region 2	4850 ± 130	-0.287 ± 0.017	$-0.284 \pm 0.017 \pm 0.007 \pm 0.003$	(15.2 <i>σ</i>)
	Region 3	4730 ± 170	$+0.196 \pm 0.019$	$+0.211 \pm 0.019 \pm 0.043 \pm 0.003$	(4.5 <i>σ</i>)
	Region 4	2270 ± 60	$+0.747 \pm 0.027$	$+0.745 \pm 0.027 \pm 0.018 \pm 0.003$	(23.0 σ)
B^{\pm}	$\rightarrow K^{\pm}\pi^{+}\pi^{-}$				_
	Region 1	41980 ± 280	$+0.201 \pm 0.005$	$+0.217 \pm 0.005 \pm 0.005 \pm 0.003$	(27.3 σ)
	Region 2	27040 ± 250	-0.149 ± 0.007	$-0.145 \pm 0.007 \pm 0.006 \pm 0.003$	(15.0 <i>σ</i>)
B^{\pm}	$\rightarrow \pi^{\pm} K^+ K^-$				_
	Region 1	11430 ± 170	-0.363 ± 0.010	$-0.358 \pm 0.010 \pm 0.014 \pm 0.003$	(20.2 σ)
	Region 2	2600 ± 120	$+0.075\pm0.031$	$+0.097 \pm 0.031 \pm 0.005 \pm 0.003$	(3.1 <i>σ</i>)
B^{\pm}	$\rightarrow K^{\pm}K^{+}K^{-}$				_
	Region 1	76020 ± 350	-0.189 ± 0.004	$-0.178 \pm 0.004 \pm 0.004 \pm 0.003$	(28.3 σ)
	Region 2	37440 ± 320	$+0.030 \pm 0.005$	$+0.043 \pm 0.005 \pm 0.004 \pm 0.003$	(6.3 σ)

Change of sign in the rescattering region \rightarrow strong phases

B^{\pm} decays into a vector resonance

□ Few $B^{\pm} \rightarrow PV$ measurements in the literature and huge theoretical interest

 $\square B^{\pm} \to h^{\pm} (V \to h^{+} h^{-}) \text{ contributions}$

 \Box Total amplitudes for B^+ and B^-

$$\mathcal{M}_{\pm} = a_{\pm}^{V} e^{i\delta_{\pm}^{V}} F_{V}^{\mathrm{BW}} \cos \theta(s_{\perp}, s_{\parallel}) + a_{\pm}^{\mathrm{S}} e^{i\delta_{\pm}^{\mathrm{S}}} F_{S}^{\mathrm{BW}}$$

□ Asymmetry ∝ to square modulus of amplitude difference

$$\begin{aligned} \left| \mathcal{M}_{\pm} \right|^{2} = & \left(a_{\pm}^{V} \right)^{2} (\cos \theta)^{2} \left| F_{V}^{\mathrm{BW}} \right|^{2} + \left(a_{\pm}^{S} \right)^{2} \left| F_{S}^{\mathrm{BW}} \right|^{2} \right) + \left(2 a_{\pm}^{V} a_{\pm}^{S} \cos \theta \left| F_{V}^{\mathrm{BW}} \right|^{2} \right| F_{S}^{\mathrm{BW}} \right|^{2} \\ & \times \left\{ \cos(\delta_{\pm}^{V} - \delta_{\pm}^{S}) \left[(m_{V}^{2} - s_{\parallel}) (m_{S}^{2} - s_{\parallel}) + (m_{V} \Gamma_{V}) (m_{S} \Gamma_{S}) \right] \\ & + \sin(\delta_{\pm}^{V} - \delta_{\pm}^{S}) \left[(m_{S} \Gamma_{S}) (m_{V}^{2} - s_{\parallel}) - (m_{V} \Gamma_{V}) (m_{S}^{2} - s_{\parallel}) \right] \right\}. \end{aligned}$$

$$\begin{aligned} \text{Direct vector } \mathbf{A}_{cp} \qquad \text{Direct NR } \mathbf{A}_{cp} \qquad \text{NR and vector interference} \end{aligned}$$

B^{\pm} decays into a vector resonance

Mass window chosen as the nominal resonance width

- → 150 MeV/c² for $\rho(770)^0$
- → 50 MeV/c² for $K^*(892)$
- → 5 MeV/c² for $\phi(1020)$

 $S_{||} \equiv (p_{h^+} + p_{h^-})^2$ $S_{\perp} \equiv (p_{h_b} + p_{h^{\pm}})^2$ $\theta \equiv \text{helicity angle}$

$$\begin{aligned} \text{Direct NR } A_{cp} & \text{NR and vector} \\ \text{interference} & \text{Direct vector } A_{cp} \end{aligned}$$
$$|\mathcal{M}_{\pm}|^{2} = f(\cos\theta(m_{V}^{2}, s_{\perp})) = p_{0}^{\pm} + p_{1}^{\pm}\cos\theta(m_{V}^{2}, s_{\perp}) + p_{2}^{\pm}\cos^{2}\theta(m_{V}^{2}, s_{\perp}) \end{aligned}$$

□ Quadratic function to get amplitude parameters → $f(x) = p_0 + p_1 x + p_2 x^2$

$$A_{CP}^{V} = \frac{|\mathscr{M}_{-}|^{2} - |\mathscr{M}_{+}|^{2}}{|M_{-}|^{2} + |\mathscr{M}_{+}|^{2}} = \frac{p_{2}^{-} - p_{2}^{+}}{p_{2}^{-} + p_{2}^{+}}$$

$B^{\pm} \rightarrow \rho(770)^0 \pi^{\pm}$

• Measurement of $\rho - \omega$ mixing

$$A_{CP} = 0.007 \pm 0.011 \pm 0.017$$
$$A_{CP} = 0.007 \pm 0.011 \pm 0.016$$
$$LHCb$$
Phys. Rev. Lett. 124 (2020) 031801

28

$B^\pm \to \rho(770)^0 K^\pm$

First time observed!

$$A_{CP} = 0.150 \pm 0.019$$
$$A_{CP} = 0.44 \pm 0.10 \pm 0.04^{+0.05}_{-0.13}$$
BaBar
Phys. Rev. D78 (2008) 012004
$$A_{CP} = 0.30 \pm 0.11 \pm 0.02^{+0.11}_{-0.04}$$

Belle Phys. Rev. Lett. 96 (2006) 251803

$B^{\pm} \rightarrow \phi(1020) K^{\pm}$

Systematic uncertainties

$\Box B^{\pm} \rightarrow PV \text{ decays}$

→ Variation of the resonance mass window

- → Variation of the fit regions
- → Projection over $cos(\theta_{hel})$ instead of $m^2_{(31,23)}$

Results for full run2 dataset

Decay channel	Vector Resonance	$\mathcal{A}_{CP}^{V} \pm \sigma_{\mathrm{stat}} \pm \sigma_{\mathrm{syst}}$	
$B^{\pm} \to \pi^{\pm}\pi^{+}\pi^{-}$	$\rho(770)^0 \to \pi^+\pi^-$	$-0.004 \pm 0.017 \pm 0.009$	
$B^{\pm} \to K^{\pm} \pi^+ \pi^-$	$ \rho(770)^0 \to \pi^+ \pi^- $ $ K^*(892)^0 \to K^{\pm} \pi^{\mp} $	$+0.150 \pm 0.019 \pm 0.011$ $-0.015 \pm 0.021 \pm 0.012$	(6.8 σ)
$B^{\pm} \to \pi^{\pm} K^+ K^-$	$K^*(892)^0 \to K^{\pm} \pi^{\mp}$	$+0.007 \pm 0.054 \pm 0.032$	
$B^{\pm} \to K^{\pm}K^{+}K^{-}$	$\phi(1020) \to K^+ K^-$	$+0.004 \pm 0.010 \pm 0.007$	_

First observation of CPV in $B^{\pm} \rightarrow \rho(770)^0 K^{\pm}$

Conclusions (1)

$$B^{\pm} \rightarrow h^{\pm}h^{+}h^{-}$$

Phase space integrated asymmetries confirmed

 $(\text{stat}) \quad (\text{syst}) \quad (J/\psi K^{\pm})$ $A_{CP}(B^{\pm} \to K^{\pm} \pi^{+} \pi^{-}) = +0.011 \pm 0.002 \pm 0.003 \pm 0.003 \text{ (2.4}\sigma)$ $A_{CP}(B^{\pm} \to K^{\pm} K^{+} K^{-}) = -0.037 \pm 0.002 \pm 0.002 \pm 0.003 \text{ (8.5}\sigma)$ $A_{CP}(B^{\pm} \to \pi^{\pm} \pi^{+} \pi^{-}) = +0.080 \pm 0.004 \pm 0.003 \pm 0.003 \text{ (14.1}\sigma)$ $A_{CP}(B^{\pm} \to \pi^{\pm} K^{+} K^{-}) = -0.114 \pm 0.007 \pm 0.003 \pm 0.003 \text{ (13.6}\sigma)$

First observation of CPV in $B^{\pm} \to K^{\pm}K^{+}K^{-}$ and $B^{\pm} \to \pi^{\pm}\pi^{+}\pi^{-}, B^{\pm} \to \pi^{\pm}K^{+}K^{-}$ confirmed

Conclusions (2)

$$B^{\pm} \rightarrow h^{\pm}h^{+}h^{-}$$

□ Non-uniform asymmetries in the phase space observed □ Significant *CP* violation in the $\pi\pi \leftrightarrow KK$ rescattering region □ Indication of CPV in the region of the $\chi_{c0}(1P)$ resonance □ Ongoing amplitude analysis will provide further details

$$B^{\pm} \to PV$$

□ Measurement of asymmetries in $B^{\pm} \rightarrow PV$ decays □ Observation for the first time of CPV in $B^{\pm} \rightarrow \rho(770)^0 K^{\pm}$ □ Significant improvement compared to Belle and BaBar

Run3 starting soon!

Backup

CP violation from interferences between: resonances in the phase space

Event selection strategy

Trigger requirements

- L0 Trigger
 - B_L0HadronDecision_TOS > 0 || B_L0Global_TIS > 0
- **HLT** Trigger
 - B_Hlt1TrackAllMVADecision_TOS>0 > 0
 - Hlt2Topo(2-,3-, or 4-Body)_TOS

Stripping selection

Data selected using StrippingBu2hhh_KKK_inclLine

Full run2 data sample (5.9 fb⁻¹)

Stripping requirements

Table 5: StrippingBu2hhh_KKK_inclLine stripping line selection criteria for charmless B^{\pm} decays to three light hadrons.

Variables	Selection cuts
Tracks P _T	> 0.1 GeV/c
Tracks P	> 1.5 GeV/c
Tracks $IP\chi^2$	> 1
Tracks χ^2 /n.d.f.	< 3
Tracks GhostProb	< 0.5
Sum of P_T of tracks	> 4.5 GeV/c
Sum of P of tracks	> 20. GeV/c
Sum of $IP\chi^2$ of tracks	> 500
P_T of the highest- P_T track	> 1.5 GeV/c
Maximum DOCA	< 0.2 mm
B^{\pm} candidate M_{KKK}	$5.05 - 6.30 \text{ GeV/c}^2$
B^{\pm} candidate M_{KKK}^{COR}	$4-7 \text{ GeV/c}^2$
B^{\pm} candidate IP χ^2	< 10
B^{\pm} candidate P_{T}	> 1. GeV/c
Distance from SV to any PV	$> 3 \mathrm{mm}$
Secondary Vertex χ^2	< 12
B^{\pm} candidate $\cos(\theta)$	> 0.99998
B^{\pm} Flight Distance χ^2	> 500

Full run2 data samples (2015 - 2018)

Year	Luminosity	Stripping	Reco
2015	$0.33{\rm fb}^{-1}$	Stripping24r1	Reco15a
2016	$1.67{\rm fb}^{-1}$	Stripping28r1	Reco16a
2017	$1.71{\rm fb}^{-1}$	Stripping29r2	Reco17
2018	$2.19{\rm fb}^{-1}$	Stripping34	Reco18
run2 :	= 5.9 fb ⁻¹		

MC samples (2015 - 2017)

- Generated flat in the square Dalitz plot without CPV
- Small MC for MVA, PID selection and background studies
- Large MC for efficiency maps and mass fits

 $B^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-}$

Correlation Matrix (background)

40

Comparison of data 2015-2018 and MC 2015-2017 after loose requirements

41

PID selection

Selection to control the cross-feed background

Positive and negative requirements on ProbNNk(pi) variables

 $\square B^+ \rightarrow \overline{D}^0 K^+(\pi^+)$, with $\overline{D}^0 \rightarrow K^+ \pi^- / K^+ K^- / \pi^+ \pi^-$ to define the cut values

□ isMuon == 0 and ProbNNe < 0.4 to all tracks in all modes

Example: PID requirement of $B^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-}$

→ After applying negative PID requirements, positive identification becomes very efficient

Charm veto

\Box Veto applied ± 35 MeV around D^0 mass

u mislD contributions also removed. Example: $\pi^+K^+\pi^-$ final state

 $\rightarrow B^+ \rightarrow \bar{D}^0(\rightarrow K^+\pi^-)\pi^+ \text{ and } B^+ \rightarrow \bar{D}^0(\rightarrow \pi^+\pi^-)K^+ \text{ (no misID)}$ $\rightarrow B^+ \rightarrow \bar{D}^0(\rightarrow K^+K^-/\pi^+\pi^-)\pi^+ \text{ (single } K - \pi \text{ misID)}$

Efficiency

0.9

mPrime

0.8

0.8

0.5

Efficiency correction

- □ From simulated samples (2015 + 2016 + 2017)
- **D** Square Dalitz plot coordinates $\{m_{12}, \theta_{12}\}$
- Separately by polarity, trigger and year
 - → Maps are combined by using weights from data

Control channel: $B^{\pm} \rightarrow J/\psi K^{\pm}$

Signal component $N(B^{\pm} \rightarrow J/\psi K^{\pm})$

 $B^{\pm}_{asymmetry}$

 B_{mass} [MeV/ c^2]

 $\dot{\mathrm{B}}_{width}$ [MeV/ c^2]

 $B_{qausswidth}$ [MeV/ c^2

 1438776 ± 1424

 -0.011814 ± 0.000815

 5286.3000 ± 0.0174

 20.2440 ± 0.0409

 13.4640 ± 0.0738

- $\Box B^{\pm} \to K^{\pm} \pi^{+} \pi^{-} \text{ data sample}$
- □ $A_{CP}(B^{\pm} \to J/\psi K^{\pm}) = 0.0018 \pm 0.0030$ (PDG)
- 2 CB + 1 gaussian parametrization

$$A_P = A_{CP}(B^{\pm} \to J/\psi K^{\pm})_{\text{data}} - A_{CP}(B^{\pm} \to J/\psi K^{\pm})_{\text{PDG}}$$

 $A_p = -0.0070 \pm 0.0008^{+0.0007}_{-0.0008} \pm 0.0030$ (stat) (syst) (PDG)

Validation of $B \rightarrow PV$ method

Efficiency correction - example for $\rho(770)$ in $B^{\pm} \rightarrow \pi^{\pm}\pi^{+}\pi^{-}$

Accounts for overall non-uniform signal efficiencies

→ Dividing B^+ and B^- yields distributions by the scaled efficiency histograms

$K^*(892) \text{ in } B^{\pm} \to K^{\pm} \pi^+ \pi^-$

 $K^*(892)$ in $B^{\pm} \to \pi^{\pm} K^+ K^-$

variant	R	$A_{ m RAW}$	$A_{ m P}$
MuonTOS			
central MagUp MagDown GaussExp background	0.986767 ± 0.000274	$\begin{array}{l} -0.011810 \pm 0.000815 \\ -0.01104 \pm 0.00115 \\ -0.01204 \pm 0.00118 \\ -0.011810 \pm 0.000843 \\ -0.011840 \pm 0.000763 \end{array}$	$\begin{array}{l} -0.006951 \pm 0.000827 \\ -0.00618 \pm 0.00116 \\ -0.00718 \pm 0.00119 \\ -0.006951 \pm 0.000854 \\ -0.006981 \pm 0.000775 \end{array}$
DiMuonTOS TIS	$\begin{array}{c} 0.989947 \pm 0.000374 \\ 0.987192 \pm 0.000574 \end{array}$	$\begin{array}{l} -0.010880 \pm 0.000899 \\ -0.01199 \pm 0.00147 \end{array}$	$\begin{array}{l} -0.007630 \pm 0.000918 \\ -0.007344 \pm 0.000981 \end{array}$

 $A_{\rm P} = -0.006951 \pm 0.000827^{+0.00068}_{-0.00077}$

Component	Region	$\pi^{\pm}\pi^{+}\pi^{-}$	$K^{\pm}\pi^{+}\pi^{-}$	$\pi^{\pm}K^{+}K^{-}$	$K^{\pm}K^{+}K^{-}$
Acceptance	All Dalitz plot	0.00181	0.00140	0.00195	0.00164
	Region 1	0.00321	0.00407	0.00302	0.00242
	Region 2	0.00457	0.00497	0.00226	0.00332
	Region 3	0.00560	-	-	-
	Region 4	0.00125	-	-	-
Mass fit	All phase space	0.00017	0.00046	0.00040	0.00099
(Peaking	Region 1	0.00005	0.00185	0.00406	0.00003
bkg fraction)					
	Region 2	0.00006	0.00024	0.00020	0.00000
	Region 3	0.00483	-	-	-
	Region 4	0.00861	-	-	-
Mass fit	All phase space	0.00054	0.00218	0.00068	0.00010
(Peaking	Region 1	-	-	-	-
bkg asymmetry))				
	Region 2	-	-	-	-
	Region 3	-	-	-	-
	Region 4	-	-	-	-
Mass fit	All phase space	0.00154	0.00021	0.00253	0.00054
(Combinatorial	Region 1	0.00010	0.00212	0.00055	0.00273
model)					
	Region 2	0.00177	0.00240	0.00467	0.00050
	Region 3	0.01678	-	-	-
	Region 4	0.01483	-	-	-
Mass fit	All phase space	0.00004	0.00037	0.00013	0.00071
(Signal model)	Region 1	0.00102	0.00191	0.01332	0.00023
	Region 2	0.00506	0.00199	0.00007	0.00030
	Region 3	0.02499	-	-	-
	Region 4	0.00418	-	-	-
Mass fit	All phase space	-	-	-	
(Spectrum	Region 1	-	-	-	-
range)					
	Region 2	-	-	-	-
	Region 3	0.03000	-	-	-
	Region 4	-	-	-	-
Total	All phase space	0.002	0.003	0.003	0.002
	Region 1	0.003	0.005	0.014	0.004
	Region 2	0.007	0.006	0.005	0.003
	Region 3	0.043	-	-	-
	Region 4	0.018	-	-	-

$\Box B \rightarrow PV \text{decays}$

- \rightarrow Variation of the resonance mass window
- → Variation of the fit regions
- → Projection over $cos(\theta_{hel})$ instead of $m^2_{(31,23)}$

Decay channel	Vector Resonance	$\begin{array}{l} Mass \ window \\ (MeV/c^2) \end{array}$	Variation (MeV/c^2)	σ
$B^\pm \to \pi^\pm \pi^+ \pi^-$	$\rho(770)^0 \to \pi^+\pi^-$	150	140-160	0.0012
$B^\pm \to K^\pm \pi^+ \pi^-$	$ \rho(770)^0 \to \pi^+ \pi^- \\ K^*(892)^0 \to K^\pm \pi^\mp $	150 50	140-160 45-55	$0.0012 \\ 0.0035$
$B^\pm \to \pi^\pm K^+ K^-$	$K^*(892)^0 \to K^{\pm} \pi^{\mp}$	50	45-55	0.0151
$B^\pm \to K^\pm K^+ K^-$	$\phi(1020) \to K^+K^-$	5	4.5-5.5	0.0030

Decay channel	Vector Resonance	$\begin{array}{l} {\rm Projection\ range} \\ {\rm (GeV^2/c^4)} \end{array}$	Variation $(\text{GeV}^2/\text{c}^4)$	σ
$B^\pm \to \pi^\pm \pi^+ \pi^-$	$\rho(770)^0 \to \pi^+\pi^-$	5-21	$4\text{-}20 \rightarrow 6\text{-}22$	0.0071
$B^{\pm} \rightarrow K^{\pm} \pi^+ \pi^-$	$ \rho(770)^0 \to \pi^+ \pi^- \\ K^*(892)^0 \to K^{\pm} \pi^{\mp} $	5-22 5-17	$\begin{array}{c} 4\text{-}21 \rightarrow 6\text{-}23 \\ 4\text{-}16 \rightarrow 6\text{-}18 \end{array}$	$0.0076 \\ 0.0061$
$B^\pm \to \pi^\pm K^+ K^-$	$K^*(892)^0 \to K^{\pm} \pi^{\mp}$	10-25	$9\text{-}24 \rightarrow 11\text{-}26$	0.0235
$B^{\pm} \to K^{\pm}K^{+}K^{-}$	$\phi(1020) \to K^+ K^-$	11-16	$10.5-15.5 \rightarrow 11.5-$ 16.5	0.0053

Decay channel	Vector Resonance	$A_{CP}(m^2(h^+h^-))$	$A_{CP}(\cos \theta_{\rm hel})$	σ
$B^\pm \to \pi^\pm \pi^+ \pi^-$	$\rho(770)^0 \to \pi^+\pi^-$	-0.0035 ± 0.0171	$+0.0014 \pm 0.0183$	0.0049
$B^{\pm} \rightarrow K^{\pm} \pi^+ \pi^-$	$ \rho(770)^0 \to \pi^+ \pi^- \\ K^*(892)^0 \to K^\pm \pi^\mp $	$+0.1501 \pm 0.0189$ -0.0151 ± 0.0206	$+0.1578 \pm 0.0223$ -0.0054 ± 0.0220	$0.0077 \\ 0.0097$
$B^\pm \to \pi^\pm K^+ K^-$	$K^*(892)^0 \to K^{\pm} \pi^{\mp}$	$+0.0073 \pm 0.0543$	$+0.0225 \pm 0.0651$	0.0153
$B^{\pm} \rightarrow K^{\pm}K^{+}K^{-}$	$\phi(1020) \to K^+K^-$	$+0.0035 \pm 0.0104$	$+0.0067 \pm 0.0117$	0.0032

Background subtraction method

