ISTITUTO NAZIONALE DI FISICA NUCLEARE CSN 5

SHERPA

"Slow High-efficiency Extraction from Ring Positron Accelerator"

P.I.:

Marco Garattini

SHERPA

(CSN5 Young Researcher Grant 2020-2022 - P.I.: Dr. M. Garattini)

R&D study to extract a high-quality e^+ (or e^-) beam from one of the DA Φ NE rings The idea is to use coherent processes in a bent crystal to steer the positron beam

Target spill parameters:

- Energy spread: $\Delta p/p < 10^{-3}$
- Emittance: $\varepsilon < 10^{-6} \, \text{rad} \cdot \text{m}$
- Length: Δt ~ ms

VS

Current BTF spill parameters:

- Energy spread: $\Delta p/p < 0.5 \times 10^{-2}$
- Emittance: $\varepsilon < 10^{-5} \, \text{rad} \cdot \text{m}$
- Length: Δt ~ 300 ns

Conceptually similar to that already demonstrated by UA9 for crystal extraction at the SPS

Immediate application:

With the **SHERPA beam**, **PADME** ("Positron Annihilation into **D**ark **M**atter **E**xperiment") could increase the **statistics by a factor** ~10⁴ and its **sensitivity by a factor** ~10², largely extending the discovery potential

SHERPA experimental apparatus

Silicon crystais Crystai

Crystal bending holder by CINEL

Apparatus scheme for crystal characterization

Crystal chamber

- - e⁺ impinging the crystal not deflect by the crystal - · - e⁺ impinging the crystal deflected by the crystal
 - $= e^+$ beam profile outgoing from the crystal

2D Pixel Detector (TimePix3)

Ultrathin Mylar windows (23 and 50 μm)

2 m pipe

Beam requirements

The SHERPA dream:

- Pure positrons beam
- E = 0.5 GeV (but also 1 GeV could be fine)
- Beam spot: (1 x 1) mm² (1 sigma)
- Beam divergence < 200 μrad (1 sigma)
- Beam intensity: as high as possible

I have preliminarily discussed these beam requirements with Johannes Bernhard before the official beam request some months ago

Infrastructure requirements

- Vacuum pipe (4-5 m long): CF63
- Vacuum connections (CF63) to mount our vacuum chamber directly on the T9 beam line
- T9 spill signal (TTL) to trigger our TimePix3 detector
- If the T9 spill signal is not available, we need high-voltage for a trigger scintillator
- Standard power supply and Ethernet connection
- Scroll vacuum pump (15 m³/h)
- Tombac KF40/KF25 mm
- A rack for electronic devices
- A support for the crystal chamber (150 Kg), possibly with vertical motion (remote movable table not strictly necessary)
- Supports for vacuum pipes

Thank you very much !!!

By the SHERPA team...

