BTV AD Target - Screen issue

BI-TB 13 ${ }^{\text {th }}$ of April 2022
S.Burger BI-PM

- New BTV setup (post LS2)
- Screen issue: 2021
- New screen: OTR from 2022
- Measurements results
- Conclusion

AD Target new BTV

AD Target consolidation during LS2

Request for BI (2017):

"Be able to measure beam size in front of the AD target for all extracted beams with a resolution <250um"

- Present monitoring has poor resolution \& sensitivity (as analogue Vidicon tube detector is used for radiation purpose) and any maintenance needs access

Main components for the new BTV:

- Digital camera
- High resolution, sensitivity

Layout of the AD target area.

- Adjustable integration time, gain, etc...
- Optical line to locate the camera outside of the irradiated area
- Limit the number of optical components \rightarrow No maintenance of the optical line inside the area !!
- Keep scintillating Screen - CHROMOX -0.5 mm thick

BTV for the Post LS2 AD Target |

Document AD-BTV-ES-0001 (v.1.0) (cern.ch) EDMS 2274393

- Design of the BTV screen setup on the new target trolley
- Design of the optical line (ZEMAX simulations) :
- Mirror base with no elements inside the radioactive area:
- $300 \mathrm{~mm} \times 200 \mathrm{~mm}$
- $>95 \%$ reflectivity
- Flatness lambda/5
- Camera lens
- F800mm/5.6NA
- Optimization optical \& spatial resolution @ F400mm

Proposal for new BTV optical line in AD Target.

BTV AD Target - Screen issue run 2021

- Chromox screen was OK for the commissioning of the ADT with lower intensity
- With nominal intensity, screen damaged was visible after ~ 100 shots (noticeable before with the beam size measurement getting higher)

Chromox screen degradation

New Screen for AD Target BTV (1)

OTR GlassyC (HiRadMat experience)

- Lower yield than Chromox
- Specific angular emission
- Large emission angle
- Gain of digital camera (x200)
- Image intensifier if needed (thanks Stefano, Enrico!)

First measurement very encouraging as we had enough light with $\mathbf{2 0 \%}$ of the nominal

New Screen for AD Target BTV (2)

Nevertheless, there is:

- A huge background on the entire reflective surface \rightarrow Luminescence ? OTR reflections?
- A tail \rightarrow Luminescence ? Forward OTR from last 'beam window' ?
- This was not seen with the Chromox screen in 2021

Example of measurement of ADT beam
\rightarrow Despite the parasitic effects, OP AD prefers to keep this screen which gives very stable measurements

Forward OTR From Last Permanent Magnet Cover

- Emission angle

$$
1 / \gamma=1 / 26 \sim 38 \mathrm{mrad}
$$

- Distance Magnet Cover - BTV Screen 1700mm
- Transverse OTR peak position @ screen $x=64.6 \mathrm{~mm}$
- Screen size: $25 \mathrm{~mm} \times 35 \mathrm{~mm}$

This confirms that the tail is probably not FW OTR from the magnet cover.
But the 'BG light' could still be from the FW OTR !!
\rightarrow A blocking foil can be mounted to eliminate this parasitic light.
\rightarrow It will produce FW OTR as well
@ 5 cm , Transverse OTR peak position gives $\sim 2 \mathrm{~mm}$ that could be visible on the measurement \rightarrow TBC, maybe not as the DOF is large with this long optical line.

Calculations: OTR \& Scintillation (luminescence) Yield

Based on calculation model used by B.Biskup for HRM calculations

	OTR	Scintillation	
Total Yield [photons/p]	$1.66 \mathrm{e}-02$	$3.37 \mathrm{e}+0$	
Emission	$1 / 26 \mathrm{GeV} \rightarrow \sim 38 \mathrm{mrad}$	4 PI	
Optical acceptance	$150 \mathrm{~mm} @ 20 \mathrm{~m} \rightarrow \sim 3.75 \mathrm{mrad}$	$150 \mathrm{~mm} @ 20 \mathrm{~m} \rightarrow \sim 3.75 \mathrm{mrad}$	
Captured in optical line	$\mathbf{1 . 6 2 E - 0 4}$	$\mathbf{2 . 1 1 e - 7}$	

High-pass filter test (1)

Air Composition

Goal: Filter the ${ }^{\sim} 400 \mathrm{~nm}$ wavelength (blue)

Filter

Reference: 5CGA-455
MICRO-CONTROLE Spectra-Physics S.A.S
Longpass Filter, Colored-Glass Alternative, 12.7 mm, 455 nm Cut-on

High-pass filter test (2)

Conclusion

- An OTR screen for the new AD Target was installed as replacement for the Chromox screen type that was rapidly degraded when used in air
- Works fine in term of signal to noise
- But parasitical light appears:
- BG light \rightarrow FW OTR to be confirmed with a blocking foil
- Luminescence \rightarrow tested \rightarrow weak due to the low aperture of the optical line

\rightarrow We keep the OTR screen despite the parasitic light as it is very stable

- Next steps:
- Bandpass filter / polarizer test to try to understand the source of parasitical light
- Blocking foil test (**ested in October 2022 see last slide)

Image Acquisition 2022_04_19 Using Different Filters

Pass-band filters from CORION

	Wavelength $[\mathrm{nm}]$	FWHM $[\mathrm{nm}]$	Gain BASLER	Max px Amp. [a.u.]
1	550	40	$\times 200$	480
2	620	10	$\times 200$	60
3	650	40	$\times 200$	245
4	750	40	$\times 200$	60
5	$>450 \mathrm{~nm}$	-	0	700
REF	All	-	0	900

$\rightarrow 10$ ns FWHM is not enough without intensifier
\rightarrow Very little light @750nm
\rightarrow Using passband filters seem to remove the light of the core
\rightarrow Core light emission wavelengths seems to be $620 \mathrm{~nm}<\gamma<750 \mathrm{~nm}$ (?)

FW OTR effect on BW OTR screen (1)

FW OTR effect on BW OTR screen (2)

Consolidation of the AD target BTV beam Instrumentation

Operational name FTA.BTV9064

CHROMOX
screen

Mirrors

CHROMOX screen AF995 (99.5\% alumina)
1mm thick
40 mm diameter

Beam measurement using the BTVI application.

Comparison OTR with/without blocking foil

