
LHC BPM changes and status

M. Krupa, J. Albertone, A. Boccardi, M. Gonzalez, S. Jackson, S. Ozdogan, A. Topaloudis, M. Wendt

LHC BPM system architecture overview

LHC BPM status

Summary of LS2 & YETS HW interventions

- Refurbishment of the laboratory calibration test bench & calibration procedures
- Replacement & recalibration of 221 WBTN cards
- Replacement & recalibration of 50 complete DAB cards (1 DAB + 2 integrators)
- Dis- and reconnection of 81 BPMs for vacuum interventions
- Installation of a new warm BPMWI.A5L8.B2 to functionally replace the non-conform cryogenic BPMR.5L8.B2
- Replacement / reconnection of cryogenic cables in 3 BPMs

Summary of LS2 & YETS SW interventions

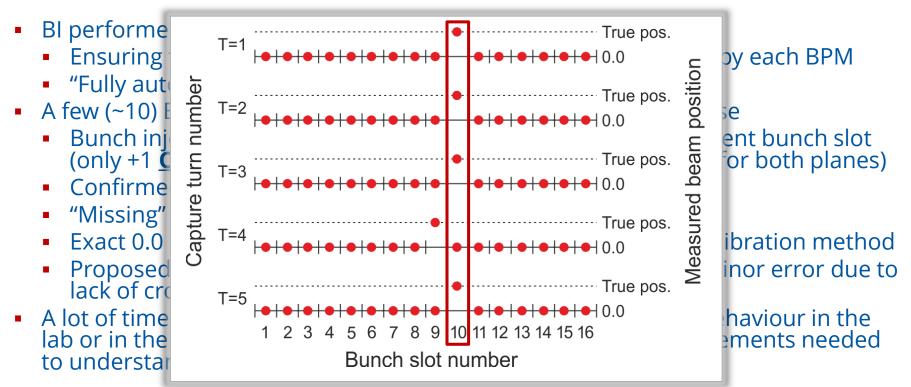
- Real-time system upgrade to the version recommended for Run3 (CentOS7, Festa 8.3.1) & CCDE TL configuration clean-up
- Upgrade of Java expert applications further work ongoing
- Change of the timestamp source from BST to local
- New FESA PM integration (to be validated with beam in 2022), PM did not work correctly in 2021
- BI / CEM / CSS agreement to delay Lumens deployment until EYETS 2022-23

System readiness for beam

- LHC BPM system is fully operational and ready for beam with the same performance as in Run 2
 - System validated during LS2 (RF ball, calibration) and 2021 beam tests (beam measurements)
- BPM activities during commissioning:
 - Validation of the new PM-FESA integration
 - Bunch phasing
 - Data taking with ABP

Feedback from OP and ABB

- List of 143 suspicious BPMs from OP (39) & ABP (116) complied at the start of LS2
 - Recalibration of the system and a massive WBTN replacement campaign in LS2
- List of 142 suspicious BPMs from OP (14) & ABP (132) compiled after the 2021 beam tests
 - ABP flags BPMs only after very heavy pre-processing
 - Detailed analysis of "raw" data by BI-BP, including historical data from 2015-18



Executive summary of BI analysis

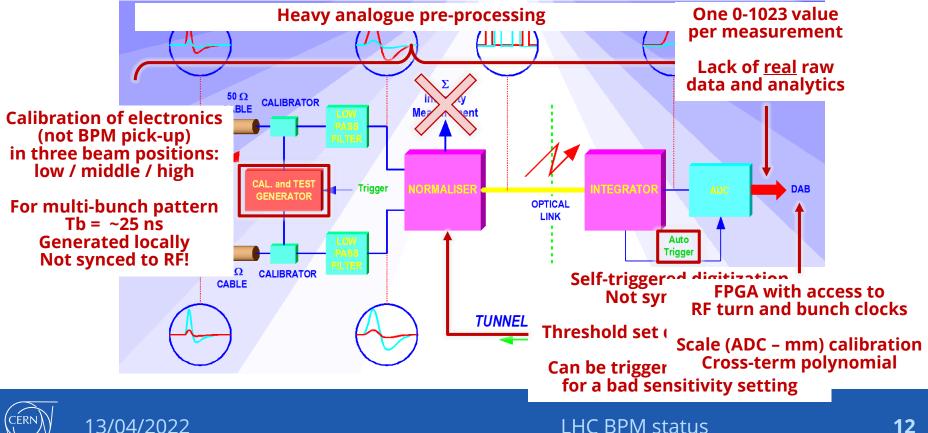
- **50** BPMs likely experienced DAB HW problems (memory / bad connection)
 - Affecting only turn-by-turn capture (i.e. ABP) and <u>not</u> orbit (i.e. OP)
 - The same BPMs affected consistently since at least 2015
 - DABs replaced during YETS, new sequencer task to test all DABs
- **29** BPMs exhibit the "exact zero" problem
 - Affecting only turn-by-turn capture (i.e. ABP) and <u>not</u> orbit (i.e. OP)
 - Problem exists since at least 2015, affects the same BPMs on a short timescale (~ hours) and different BPMs on a long time-scale (~ weeks)
 - Investigations will continue in Run 3 (more beam measurements needed)
 - Effective workaround proposed to ABP, will be implemented for Run 3
- **14** BPMs with other minor problems (e.g. disconnected cables) all already fixed
- **39** BPMs look fine to BI

"Exact zero" problem

HW DAB problems

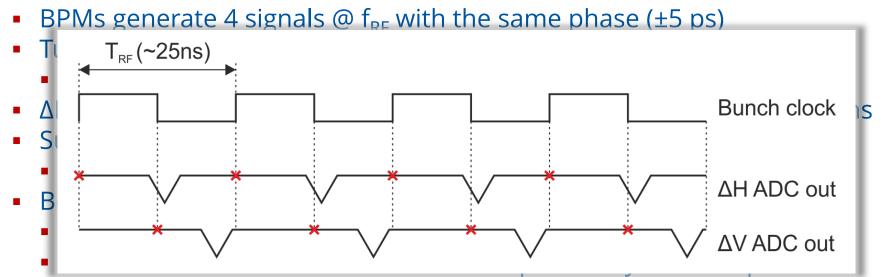
Summary

- LHC BPM system is fully operational and ready for beam with at least the same performance as in Run 2
- Major tunnel and surface maintenance activities already completed
- Systematic analysis with beam needed to understand the origin of the <u>old and non-blocking</u> "exact zero" problem
- DAB HW problems will be detected by the sequencer
- Final validation of the new FESA-PM integration will be done with beam



Thank you for your attention

LHC BPM system architecture


"Exact zero" – analysis until now

- Recreating the problem without beam challenging / impossible
 - Our tunnel calibration signals are not synchronous with f_{RF}
 - No success with producing even a single exact 0 with synchronous beam-like signals generated on our laboratory test bench
 - Reference electronics and electronics removed from the LHC surface racks
- A hint from 2021– swapping two surface cards solved one instance of this problem
 - <u>Very limited statistics</u>, could have been coincidental
- More studies needed in Run 3 to understand the issue
 - Analysis of as many captures as possible
 - Logging and automatization would be beneficial
 - Commissioning time and hardware interventions must be anticipated
 - Measurements of raw analogue signals
 - Power-cycling electronics
 - Swapping cards
 - Other ideas will be surely developed as we improve our understanding of the problem

Bunch phase detection

- Two possible values of phase shift: +0 T_{RF} / +0.5 T_{RF}
- Phase shift selected and <u>frozen</u> automatically during phasing
- Goal: ADC read-out far from transition states

