

Institute of particle and nuclear physics, Charles University in Prague

Non-zero neutrino mass effects

Neutrino oscillations

Neutrinos produced in weak interactions \neq mass eigenstates (?)

$$
\left|\nu_{\alpha}\right\rangle=U_{\alpha 1}^{*}\left|\nu_{1}\right\rangle+U_{\alpha 2}^{*}\left|\nu_{2}\right\rangle
$$

B. Pontecorvo, Sov.Phys.JETP 6 (1957) 429

5рино Toн miesorthe

Neutrino oscillations

Neutrinos produced in weak interactions \neq mass eigenstates (?)

$$
\left|\nu_{\alpha}\right\rangle=U_{\alpha 1}^{*}\left|\nu_{1}\right\rangle+U_{\alpha 2}^{*}\left|\nu_{2}\right\rangle
$$

B. Pontecorvo, Sov.Phys.JETP 6 (I957) 429

NB Neutral kaon oscillations 1957
NB Muon neutrinos not beforel 962 !
M.L. Good, Phys. Rev. I06 (1957) 59 I

Lederman, Schwarz, Steinberger

Neutrino oscillations

Two-level QM aproximation:

$$
\left|\nu_{\alpha}\right\rangle=U_{\alpha 1}^{*}\left|\nu_{1}\right\rangle+U_{\alpha 2}^{*}\left|\nu_{2}\right\rangle
$$

Neutrino oscillations

Two-level QM aproximation:

$$
|\psi, t\rangle=e^{-i H t}\left|\nu_{e}\right\rangle \quad\left\langle\nu_{e} \mid \psi, t\right\rangle=\left\langle\nu_{e}\right| e^{-i H t}\left|\nu_{e}\right\rangle=\sum_{i=1}^{2} e^{-i E_{i} t} U_{e i} U_{e i}^{*}
$$

Survival probability:

$$
P\left(\nu_{e} \rightarrow \nu_{e}\right)=\ldots=1-\sin _{\text {mixing angle }}^{2} 2 \theta \times \sin ^{2}\left(\frac{m_{2}^{2}-m_{1}^{2}}{4 E} L\right)
$$

Mixing in the lepton sector...

$\begin{aligned} \text { Direct analogy with quarks: } & \mathcal{L} \ni \frac{g}{\sqrt{2}} \overline{u_{L}^{\alpha}} \gamma^{\mu} V_{\alpha i} d_{L}^{i} W_{\mu}^{+}+\text {h.c. } \\ & \mathcal{L} \ni \frac{g}{\sqrt{2}} \overline{\ell_{L}^{\alpha}} \gamma^{\mu} U_{\alpha i} \nu_{L}^{i} W_{\mu}^{-}+\text {h.c. }\end{aligned}$

Mixing in the lepton sector...

Direct analogy with quarks: $\mathcal{L} \ni \frac{g}{\sqrt{2}} \overline{u_{L}^{\alpha}} \gamma^{\mu} V_{\alpha i} d_{L}^{i} W_{\mu}^{+}+$h.c.

$$
\mathcal{L} \ni \frac{g}{\sqrt{2}} \overline{\ell_{L}^{\alpha}} \gamma^{\mu} U_{\alpha i} \nu_{L}^{i} W_{\mu}^{-}+h . c .
$$

$$
U=\left(\begin{array}{ccc}
c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i \delta} \\
-c_{23} s_{12}-s_{23} c_{12} s_{13} e^{i \delta} & c_{23} c_{12}-s_{23} s_{12} s_{13} e^{i \delta} & s_{23} c_{13} \\
s_{23} s_{12}-c_{23} c_{12} s_{13} e^{i \delta} & -s_{23} c_{12}-c_{23} s_{12} s_{13} e^{i \delta} & c_{23} c_{13}
\end{array}\right)
$$

Pontecorvo - Maki - Nakagawa - Sakata matrix

3 angles, I CP phase (visible in oscillations)

Atmospheric neutrino oscillations (1998)

Super-Kamiokande

Atmospheric neutrino oscillations (1998)

Super-Kamiokande

50,000 tons of ultrapure water, about 11,000 PMTs

Solar neutrino puzzle

late 1960's: Homestake mine, SD

$$
\nu+{ }^{37} C l \rightarrow{ }^{37} A r^{*}+e^{-}
$$

Ray Davis jr.

John Bahcall

Only $1 / 3$ of the predicted flux observed!

SNO (2000)

Neutrino oscillation parameters

Parameter	Best fit $\pm 1 \sigma$	2σ range	3σ range
$\Delta m_{21}^{2}\left[10^{-5} \mathrm{eV}^{2}\right]$	$7.55_{-0.16}^{+0.20}$	$7.20-7.94$	$7.05-8.14$
$\left\|\Delta m_{31}^{2}\right\|\left[10^{-3} \mathrm{eV}^{2}\right](\mathrm{NO})$	2.50 ± 0.03	$2.44-2.57$	$2.41-2.60$
$\left\|\Delta m_{31}^{2}\right\|\left[10^{-3} \mathrm{eV}^{2}\right](\mathrm{IO})$	$2.42_{-0.04}^{+0.03}$	$2.34-2.47$	$2.31-2.51$
$\sin ^{2} \theta_{12} / 10^{-1}$	$3.20_{-0.16}^{+0.20}$	$2.89-3.59$	$2.73-3.79$
$\theta_{12} /^{\circ}$	$34.5_{-1.0}^{+1.2}$	$32.5-36.8$	$31.5-38.0$
$\sin ^{2} \theta_{23} / 10^{-1}(\mathrm{NO})$	$5.47_{-0.30}^{+0.20}$	$4.67-5.83$	$4.45-5.99$
$\theta_{23} /^{\circ}$	$47.7_{-1.7}^{+1.2}$	$43.1-49.8$	$41.8-50.7$
$\sin ^{2} \theta_{23} / 10^{-1}(\mathrm{IO})$	$5.51_{-0.30}^{+0.18}$	$4.91-5.84$	$4.53-5.98$
$\theta_{23} /^{\circ}$	$47.9_{-1.7}^{+1.0}$	$44.5-48.9$	$42.3-50.7$
$\sin ^{2} \theta_{13} / 10^{-2}(\mathrm{NO})$	$2.160_{-0.069}^{+0.083}$	$2.03-2.34$	$1.96-2.41$
$\theta_{13} /^{\circ}$	$8.45_{-0.14}^{+0.16}$	$8.2-8.8$	$8.0-8.9$
$\sin ^{2} \theta_{13} / 10^{-2}$ (IO)	$2.220_{-0.076}^{+0.074}$	$2.07-2.36$	$1.99-2.44$
$\theta_{13} /^{\circ}$	$8.53_{-0.15}^{+0.14}$	$8.3-8.8$	$8.1-9.0$

Phys.Lett.B 782 (20I8) 633

Neutrino oscillation parameters

Parameter	Best fit $\pm 1 \sigma$	2σ range	3σ range
$\delta / \pi(\mathrm{NO})$	$1.32_{-0.15}^{+0.21}$	$1.01-1.75$	$0.87-1.94$
$\delta /{ }^{\circ}$	238_{-27}^{+38}	$182-315$	$157-349$
$\delta / \pi(\mathrm{IO})$	$1.56_{-0.15}^{+0.13}$	$1.27-1.82$	$1.12-1.94$
$\delta /{ }^{\circ}$	281_{-27}^{+23}	$229-328$	$202-349$

A clear laboratory signal of physics beyond the SM!

At least 2 neutrinos must be massive (though presumably very light)

Absolute neutrino mass scale
(indirect indications)

Laboratory: beta decay spectrum

Laboratory: beta decay spectrum

KATRIN

$\mathrm{m}_{\mathrm{v}}<\mathrm{I} . \mathrm{I} \mathrm{eV}(90 \% \mathrm{CL})$, goal: $0.2 \mathrm{eV}(90 \% \mathrm{CL})$ after 1000 days of data taking

Cosmology: neutrinos as a DM component

stable + neutral + abundant

Critical density fraction in neutrinos : $\Omega_{\nu} h_{0}^{2} \sim 0.01 \times m_{\nu}[\mathrm{eV}]$
see cosmology lectures by Costas

Cosmology: neutrinos as a DM component

stable + neutral + abundant

Critical density fraction in neutrinos: $\Omega_{\nu} h_{0}^{2} \sim 0.01 \times m_{\nu}[\mathrm{eV}]$
see cosmology lectures by Costas

Cowsik - McClelland limit:

$$
m_{\nu}[\mathrm{eV}] \lesssim 100 \times \Omega_{\nu} h_{0}^{2}
$$

Gershtein, Zeldovic 1966
R. Cowsik, J. McClelland, Phys.Rev.Lett. 29 (1972) 669-670

Cosmology: neutrinos as a DM component

stable + neutral + abundant

Critical density fraction in neutrinos: $\Omega_{\nu} h_{0}^{2} \sim 0.01 \times m_{\nu}[\mathrm{eV}]$ see cosmology lectures by Costas

Cowsik - McClelland limit:

$$
m_{\nu}[\mathrm{eV}] \lesssim 100 \times \Omega_{\nu} h_{0}^{2}
$$

Gershtein, Zeldovic 1966
R. Cowsik, J. McClelland, Phys.Rev.Lett. 29 (1972) 669-670

DM critical density fraction $\Omega_{D M} h_{0}^{2} \sim 0.12$ yields $m_{\nu} \lesssim 10 \mathrm{eV}$

Cosmology: neutrinos as a DM component

stable + neutral + abundant

Critical density fraction in neutrinos : $\Omega_{\nu} h_{0}^{2} \sim 0.01 \times m_{\nu}[\mathrm{eV}]$ see cosmology lectures by Costas

Cowsik - McClelland limit:

$$
m_{\nu}[\mathrm{eV}] \lesssim 100 \times \Omega_{\nu} h_{0}^{2}
$$

Gershtein, Zeldovic 1966
R. Cowsik, J. McClelland, Phys.Rev.Lett. 29 (1972) 669-670

DM critical density fraction $\Omega_{D M} h_{0}^{2} \sim 0.12$ yields $m_{\nu} \lesssim 10 \mathrm{eV}$

Structure formation tells us that this can not be saturated!

Structure formation with v-dominated DM

credit: K. Heitmann, Argonne NL

Structure formation in the Λ CDM cosmology

$Z=28.62$
credit: A. Kravtsov, A. Klypin, NCSA/CCP

Structure formation in the Λ CDM cosmology

$Z=28.62$
credit: A. Kravtsov, A. Klypin, NCSA/CCP

Small-scale structure erasure effects

Relativistic neutrinos do not clump but free-stream!

Small-scale structure erasure effects

Relativistic neutrinos do not clump but free-stream!
"Erased" region size:

$$
d_{\nu} \approx \frac{1}{H\left(T \sim m_{\nu}\right)} \approx \frac{M_{P l}}{m_{\nu}^{2}}
$$

Small-scale structure erasure effects

Relativistic neutrinos do not clump but free-stream!
"Erased" region size:

$$
d_{\nu} \approx \frac{1}{H\left(T \sim m_{\nu}\right)} \approx \frac{M_{P l}}{m_{\nu}^{2}}
$$

$$
M_{\mathrm{erased}} \approx m_{\nu} \times n_{\nu}\left(T \approx m_{\nu}\right) \times d_{\nu}^{3} \approx \frac{M_{P l}^{3}}{m_{\nu}^{2}}
$$

Small-scale structure erasure effects

Relativistic neutrinos do not clump but free-stream!
"Erased" region size:

$$
d_{\nu} \approx \frac{1}{H\left(T \sim m_{\nu}\right)} \approx \frac{M_{P l}}{m_{\nu}^{2}}
$$

for m_{v} in the 10 eV ballpark
$M_{\text {erased }} \approx m_{\nu} \times n_{\nu}\left(T \approx m_{\nu}\right) \times d_{\nu}^{3} \approx \frac{M_{P l}^{3}}{m_{\nu}^{2}} \approx 10^{14} M_{\odot}$

Small-scale structure erasure effects

Relativistic neutrinos do not clump but free-stream!
"Erased" region size:

$$
d_{\nu} \approx \frac{1}{H\left(T \sim m_{\nu}\right)} \approx \frac{M_{P l}}{m_{\nu}^{2}}
$$

for m_{v} in the 10 eV ballpark
$M_{\text {erased }} \approx m_{\nu} \times n_{\nu}\left(T \approx m_{\nu}\right) \times d_{\nu}^{3} \approx \frac{M_{P l}^{3}}{m_{\nu}^{2}} \stackrel{\downarrow}{ } \approx 10^{14} M_{\odot}$
Supercluster-size!

Devising massive neutrinos

 in simple extensions of the SM
Devising neutrino masses: the Dirac option

SM neutrinos = Weyl spinors (2 components, carry charges)

Devising neutrino masses: the Dirac option

SM neutrinos $=$ Weyl spinors (2 components, carry charges)
All other matter fields in the SM are 4-component Dirac spinors

Dirac mass terms (QED-like): $m \overline{\psi_{L}} \psi_{R}+h . c$.

Devising neutrino masses: the Dirac option

SM neutrinos $=$ Weyl spinors (2 components, carry charges)
All other matter fields in the SM are 4-component Dirac spinors

Dirac mass terms (QED-like): $m \overline{\psi_{L}} \psi_{R}+h . c$.

In the SM these come from the Yukawa Lagrangian (in the broken phase)

$$
Y_{D i j} \overline{Q_{L i}}\langle H\rangle D_{R j}+Y_{U i j} \overline{Q_{L}}\langle\tilde{H}\rangle U_{R j}+Y_{E i j} \overline{L_{L i}}\langle H\rangle E_{R j}
$$

Devising neutrino masses: the Dirac option

SM neutrinos $=$ Weyl spinors (2 components, carry charges)
All other matter fields in the SM are 4-component Dirac spinors

Dirac mass terms (QED-like): $m \overline{\psi_{L}} \psi_{R}+h . c$.

In the SM these come from the Yukawa Lagrangian (in the broken phase)

$$
Y_{D i j} \overline{Q_{L i}}\langle H\rangle D_{R j}+Y_{U i j} \overline{Q_{L}}\langle\tilde{H}\rangle U_{R j}+Y_{E i j} \overline{L_{L i}}\langle H\rangle E_{R j}
$$

How about simply adding a RH neutrino component?

Devising neutrino masses: the Dirac option

SM neutrinos $=$ Weyl spinors (2 components, carry charges)
All other matter fields in the SM are 4-component Dirac spinors

Dirac mass terms (QED-like): $m \overline{\psi_{L}} \psi_{R}+h . c$.

In the SM these come from the Yukawa Lagrangian (in the broken phase)

$$
Y_{D i j} \overline{Q_{L i}}\langle H\rangle D_{R j}+Y_{U i j} \overline{Q_{L}}\langle\tilde{H}\rangle U_{R j}+Y_{E i j} \overline{L_{L i}}\langle H\rangle E_{R j}
$$

How about simply adding a RH neutrino component?
This is non as trivial as it may seem...

Charge dequantization in the SM with Dirac neutrinos

$S U(3) \times S U(2) \times U(1)$ gauge anomalies $\quad \mathcal{A}_{c} \propto \frac{1}{32 \pi^{2}} \operatorname{Tr}\left(\left\{T_{a}, T_{b}\right\} T_{c}\right) \tilde{F}_{\mu \nu}^{a} F^{b \mu \nu}$

$$
\begin{aligned}
Q_{L} & =\left(3,2, Y_{Q}\right) \\
u_{R} & =\left(3,1, Y_{U}\right) \\
d_{R} & =\left(3,1, Y_{D}\right) \\
L_{L} & =\left(1,2, Y_{L}\right) \\
e_{R} & =\left(1,1, Y_{E}\right)
\end{aligned}
$$

Charge dequantization in the SM with Dirac neutrinos

$\operatorname{SU}(3) \times S U(2) \times U(1)$ gauge anomalies $\quad \mathcal{A}_{c} \propto \frac{1}{32 \pi^{2}} \operatorname{Tr}\left(\left\{T_{a}, T_{b}\right\} T_{c}\right) \tilde{F}_{\mu \nu}^{a} F^{b \mu \nu}$

Trick: just $\mathrm{SU}(2) \times \mathrm{U}(\mathrm{I})+$ Yukawas

$$
\begin{aligned}
Q_{L} & =\left(3,2, Y_{Q}\right) \\
u_{R} & =\left(3,1, Y_{U}\right) \\
d_{R} & =\left(3,1, Y_{D}\right) \\
L_{L} & =\left(1,2, Y_{L}\right) \\
e_{R} & =\left(1,1, Y_{E}\right)
\end{aligned}
$$

R. Foot, H. Lew, and R. Volkas, J.Phys.G G19, 361 (1993)

Charge dequantization in the SM with Dirac neutrinos

$S U(3) \times S U(2) \times U(I)$ gauge anomalies $\quad \mathcal{A}_{c} \propto \frac{1}{32 \pi^{2}} \operatorname{Tr}\left(\left\{T_{a}, T_{b}\right\} T_{c}\right) \tilde{F}_{\mu \nu}^{a} F^{b \mu \nu}$

Trick: just $\mathrm{SU}(2) \times \mathrm{U}(\mathrm{I})+$ Yukawas
$\mathrm{SU}(2)^{2} \mathrm{U}(1)$:

$$
\mathrm{U}(\mathrm{I})^{3}: \quad 12 Y_{Q}^{3}+4 Y_{L}^{3}-6 Y_{U}^{3}-6 Y_{D}^{3}-2 Y_{E}^{3} \quad=0
$$

$$
\begin{aligned}
Q_{L} & =\left(3,2, Y_{Q}\right) \\
u_{R} & =\left(3,1, Y_{U}\right) \\
d_{R} & =\left(3,1, Y_{D}\right) \\
L_{L} & =\left(1,2, Y_{L}\right) \\
e_{R} & =\left(1,1, Y_{E}\right)
\end{aligned}
$$

Charge dequantization in the SM with Dirac neutrinos

$\mathrm{SU}(3) \times \operatorname{SU}(2) \times \mathrm{U}(\mathrm{I})$ gauge anomalies $\quad \mathcal{A}_{c} \propto \frac{1}{32 \pi^{2}} \operatorname{Tr}\left(\left\{T_{a}, T_{b}\right\} T_{c}\right) \tilde{F}_{\mu \nu}^{a} F^{b \mu \nu}$

Trick: just $\mathrm{SU}(2) \times \mathrm{U}(\mathrm{I})+$ Yukawas
$\mathrm{SU}(2)^{2} \mathrm{U}(1)$:

$$
\begin{aligned}
Q_{L} & =\left(3,2, Y_{Q}\right) \\
u_{R} & =\left(3,1, Y_{U}\right) \\
d_{R} & =\left(3,1, Y_{D}\right) \\
L_{L} & =\left(1,2, Y_{L}\right) \\
e_{R} & =\left(1,1, Y_{E}\right)
\end{aligned}
$$

$$
\mathrm{U}(\mathrm{I})^{3}: \quad 12 Y_{Q}^{3}+4 Y_{L}^{3}-6 Y_{U}^{3}-6 Y_{D}^{3}-2 Y_{E}^{3} \quad=0 \quad L_{L}=\left(1,2, Y_{L}\right)
$$

Yukawas: $\quad Y_{D_{i j}} \overline{Q_{L i}}\langle H\rangle D_{R_{j}}+Y_{U i j} \overline{Q_{L}}\langle\tilde{H}\rangle U_{R_{j}}+Y_{E_{i j}} \overline{L_{L i}}\langle H\rangle E_{R_{j}}$

$$
\begin{array}{ll}
-Y_{Q}+Y_{D}+Y_{H}=0 & -Y_{L}+Y_{E}+Y_{H}=0 \\
-Y_{Q}+Y_{U}-Y_{H}=0 &
\end{array}
$$

Charge dequantization in the SM with Dirac neutrinos

$\mathrm{SU}(3) \times \mathrm{SU}(2) \times \mathrm{U}(\mathrm{I})$ gauge anomalies $\quad \mathcal{A}_{c} \propto \frac{1}{32 \pi^{2}} \operatorname{Tr}\left(\left\{T_{a}, T_{b}\right\} T_{c}\right) \tilde{F}_{\mu \nu}^{a} F^{b \mu \nu}$

Trick: just $\mathrm{SU}(2) \times \mathrm{U}(\mathrm{I})+$ Yukawas
$\mathrm{SU}(2)^{2} \mathrm{U}(1)$:

$$
\begin{aligned}
Q_{L} & =\left(3,2, Y_{Q}\right) \\
u_{R} & =\left(3,1, Y_{U}\right) \\
d_{R} & =\left(3,1, Y_{D}\right) \\
L_{L} & =\left(1,2, Y_{L}\right) \\
e_{R} & =\left(1,1, Y_{E}\right)
\end{aligned}
$$

$$
\mathrm{U}(\mathrm{I})^{3}: \quad 12 Y_{Q}^{3}+4 Y_{L}^{3}-6 Y_{U}^{3}-6 Y_{D}^{3}-2 Y_{E}^{3} \quad=0 \quad L_{L}=\left(1,2, Y_{L}\right)
$$

Yukawas: $\quad Y_{D i j} \overline{Q_{L i}}\langle H\rangle D_{R_{j}}+Y_{U i j} \overline{Q_{L}}\langle\tilde{H}\rangle U_{R_{j}}+Y_{E_{i j}} \overline{L_{L i}}\langle H\rangle E_{R_{j}}$

$$
\begin{array}{ll}
-Y_{Q}+Y_{D}+Y_{H}=0 & -Y_{L}+Y_{E}+Y_{H}=0 \\
-Y_{Q}+Y_{U}-Y_{H}=0 &
\end{array}
$$

Solution:

$$
\begin{array}{|cll}
\hline Y_{Q}=+\frac{1}{6} & , Y_{U}=+\frac{2}{3} & , Y_{D}=-\frac{1}{3} \\
Y_{L}=-\frac{1}{2} & , Y_{E}=-1 & \\
\hline
\end{array}
$$

Charge dequantization in the SM with Dirac neutrinos

$S U(3) \times S U(2) \times U(I)$ gauge anomalies $\quad \mathcal{A}_{c} \propto \frac{1}{32 \pi^{2}} \operatorname{Tr}\left(\left\{T_{a}, T_{b}\right\} T_{c}\right) \tilde{F}_{\mu \nu}^{a} F^{b \mu \nu}$ With RH neutrinos one has one more variable: $\quad N_{R}=\left(1,1, Y_{N}\right)$
Trick: just $\mathrm{SU}(2) \times \mathrm{U}(\mathrm{I})+$ Yukawas $\quad Q_{L}=\left(3,2, Y_{Q}\right)$
$\mathrm{SU}(2)^{2} \mathrm{U}(1)$:

$$
6 Y_{Q}+2 Y_{L}=0 \quad d_{R}=\left(3,1, Y_{D}\right)
$$

$\mathrm{U}(\mathrm{I})^{3}: \quad 12 Y_{Q}^{3}+4 Y_{L}^{3}-6 Y_{U}^{3}-6 Y_{D}^{3}-2 Y_{E}^{3} \quad=0 \quad L_{L}=\left(1,2, Y_{L}\right)$

$$
e_{R}=\left(1,1, Y_{E}\right)
$$

Yukawas: $\quad Y_{D i j} \overline{Q_{L i}}\langle H\rangle D_{R_{j}}+Y_{U i j}{\overline{Q_{L}}}_{i}\langle\tilde{H}\rangle U_{R_{j}}+Y_{E_{i j}} \overline{L_{L i}}\langle H\rangle E_{R j}$

$$
\begin{array}{ll}
-Y_{Q}+Y_{D}+Y_{H}=0 & -Y_{L}+Y_{E}+Y_{H}=0 \\
-Y_{Q}+Y_{U}-Y_{H}=0 &
\end{array}
$$

Solution:

$$
\begin{array}{|cll}
\hline Y_{Q}=+\frac{1}{6} & , Y_{U}=+\frac{2}{3} & , Y_{D}=-\frac{1}{3} \\
Y_{L}=-\frac{1}{2} & , Y_{E}=-1 & \\
\hline
\end{array}
$$

Charge dequantization in the SM with Dirac neutrinos

$S U(3) \times S U(2) \times U(I)$ gauge anomalies $\quad \mathcal{A}_{c} \propto \frac{1}{32 \pi^{2}} \operatorname{Tr}\left(\left\{T_{a}, T_{b}\right\} T_{c}\right) \tilde{F}_{\mu \nu}^{a} F^{b \mu \nu}$ With RH neutrinos one has one more variable: $\quad N_{R}=\left(1,1, Y_{N}\right)$
Trick: just $\mathrm{SU}(2) \times \mathrm{U}(\mathrm{I})+$ Yukawas $\quad Q_{L}=\left(3,2, Y_{Q}\right)$
$\mathrm{SU}(2)^{2} \mathrm{U}(1)$:

$$
6 Y_{Q}+2 Y_{L}=0 \quad d_{R}=\left(3,1, Y_{D}\right)
$$

$\mathrm{U}(\mathrm{I})^{3}: \quad 12 Y_{Q}^{3}+4 Y_{L}^{3}-6 Y_{U}^{3}-6 Y_{D}^{3}-2 Y_{E}^{3}-2 Y_{N}^{3}=0 \quad L_{L}=\left(1,2, Y_{L}\right)$

$$
e_{R}=\left(1,1, Y_{E}\right)
$$

Yukawas: $\quad Y_{D i j} \overline{Q_{L i}}\langle H\rangle D_{R_{j}}+Y_{U i j}{\overline{Q_{L}}}_{i}\langle\tilde{H}\rangle U_{R_{j}}+Y_{E_{i j}} \overline{L_{L i}}\langle H\rangle E_{R j}$

$$
\begin{array}{ll}
-Y_{Q}+Y_{D}+Y_{H}=0 & -Y_{L}+Y_{E}+Y_{H}=0 \\
-Y_{Q}+Y_{U}-Y_{H}=0 &
\end{array}
$$

Solution:

$$
\begin{array}{|cll}
\hline Y_{Q}=+\frac{1}{6} & , Y_{U}=+\frac{2}{3} & , Y_{D}=-\frac{1}{3} \\
Y_{L}=-\frac{1}{2} & , Y_{E}=-1 & \\
\hline
\end{array}
$$

Charge dequantization in the SM with Dirac neutrinos

$S U(3) \times S U(2) \times U(1)$ gauge anomalies $\quad \mathcal{A}_{c} \propto \frac{1}{32 \pi^{2}} \operatorname{Tr}\left(\left\{T_{a}, T_{b}\right\} T_{c}\right) \tilde{F}_{\mu \nu}^{a} F^{b \mu \nu}$ With RH neutrinos one has one more variable: $\quad N_{R}=\left(1,1, Y_{N}\right)$
Trick: just $\mathrm{SU}(2) \times \mathrm{U}(\mathrm{I})+$ Yukawas $\quad Q_{L}=\left(3,2, Y_{Q}\right)$
$\mathrm{SU}(2)^{2} \mathrm{U}(1)$:

$$
6 Y_{Q}+2 Y_{L}=0 \quad d_{R}=\left(3,1, Y_{D}\right)
$$

$\mathrm{U}(\mathrm{I})^{3}: \quad 12 Y_{Q}^{3}+4 Y_{L}^{3}-6 Y_{U}^{3}-6 Y_{D}^{3}-2 Y_{E}^{3}-2 Y_{N}^{3}=0 \quad L_{L}=\left(1,2, Y_{L}\right)$

$$
e_{R}=\left(1,1, Y_{E}\right)
$$

Yukawas: $\quad Y_{D i j} \overline{Q_{L i}}\langle H\rangle D_{R_{j}}+Y_{U i j}{\overline{Q_{L}}}_{i}\langle\tilde{H}\rangle U_{R_{j}}+Y_{E i j} \overline{L_{L i}}\langle H\rangle E_{R j}+Y_{N i j} \overline{L_{L i}}\langle\tilde{H}\rangle N_{R j}$

$$
\begin{array}{ll}
-Y_{Q}+Y_{D}+Y_{H}=0 & -Y_{L}+Y_{E}+Y_{H}=0 \\
-Y_{Q}+Y_{U}-Y_{H}=0 & -Y_{L}+Y_{N}-Y_{H}=0
\end{array}
$$

Solution:

$$
\begin{array}{|cll}
\hline Y_{Q}=+\frac{1}{6} & , Y_{U}=+\frac{2}{3} & , Y_{D}=-\frac{1}{3} \\
Y_{L}=-\frac{1}{2} & , Y_{E}=-1 & \\
\hline
\end{array}
$$

Charge dequantization in the SM with Dirac neutrinos

$\mathrm{SU}(3) \times \operatorname{SU}(2) \times \mathrm{U}(\mathrm{I})$ gauge anomalies $\quad \mathcal{A}_{c} \propto \frac{1}{32 \pi^{2}} \operatorname{Tr}\left(\left\{T_{a}, T_{b}\right\} T_{c}\right) \tilde{F}_{\mu \nu}^{a} F^{b \mu \nu}$ With RH neutrinos one has one more variable: $\quad N_{R}=\left(1,1, Y_{N}\right)$
Trick: just $\mathrm{SU}(2) \times \mathrm{U}(\mathrm{I})+$ Yukawas $\quad Q_{L}=\left(3,2, Y_{Q}\right)$
$\mathrm{SU}(2)^{2} \mathrm{U}(1)$:

$$
6 Y_{Q}+2 Y_{L}=0 \quad d_{R}=\left(3,1, Y_{D}\right)
$$

$\mathrm{U}(\mathrm{I})^{3}: \quad 12 Y_{Q}^{3}+4 Y_{L}^{3}-6 Y_{U}^{3}-6 Y_{D}^{3}-2 Y_{E}^{3}-2 Y_{N}^{3}=0 \quad L_{L}=\left(1,2, Y_{L}\right)$

$$
e_{R}=\left(1,1, Y_{E}\right)
$$

Yukawas: $\quad Y_{D i j} \overline{Q_{L i}}\langle H\rangle D_{R_{j}}+Y_{U i j}{\overline{Q_{L}}}_{i}\langle\tilde{H}\rangle U_{R_{j}}+Y_{E i j} \overline{L_{L i}}\langle H\rangle E_{R j}+Y_{N i j} \overline{L_{L i}}\langle\tilde{H}\rangle N_{R j}$

$$
\begin{array}{ll}
-Y_{Q}+Y_{D}+Y_{H}=0 & -Y_{L}+Y_{E}+Y_{H}=0 \\
-Y_{Q}+Y_{U}-Y_{H}=0 & -Y_{L}+Y_{N}-Y_{H}=0
\end{array}
$$

Solution:

$$
\begin{gathered}
Y_{Q}=+\frac{1}{6}-\frac{1}{3} Y_{N}, Y_{U}=+\frac{2}{3}-\frac{1}{3} Y_{N}, Y_{D}=-\frac{1}{3}-\frac{1}{3} Y_{N}, \\
Y_{L}=-\frac{1}{2}+Y_{N}, Y_{E}=-1+Y_{N} \quad Y_{N} \in \mathbb{R}
\end{gathered}
$$

R. Foot, H. Lew, and R. Volkas, J.Phys.G G19, 361 (1993)

Charge dequantization in the SM with Dirac neutrinos

Symmetry argument: B and L anomalies in the SM

$$
\begin{gathered}
\operatorname{Tr}(\{Y, Y\} L)=\operatorname{Tr}(\{Y, Y\} B)=-\frac{1}{2} \quad \operatorname{Tr}\left(\left\{T_{L}^{3}, T_{L}^{3}\right\} L\right)=\operatorname{Tr}\left(\left\{T_{L}^{3}, T_{L}^{3}\right\} B\right)=\frac{1}{2} \\
\operatorname{Tr}(\{Y, Y\}(B-L))=0, \operatorname{Tr}\left(\left\{T_{L}^{3}, T_{L}^{3}\right\}(B-L)\right)=0, \ldots, \operatorname{Tr}(B-L)^{3} \neq 0
\end{gathered}
$$

Charge dequantization in the SM with Dirac neutrinos

Symmetry argument: B and L anomalies in the SM

$$
\begin{gathered}
\operatorname{Tr}(\{Y, Y\} L)=\operatorname{Tr}(\{Y, Y\} B)=-\frac{1}{2} \quad \operatorname{Tr}\left(\left\{T_{L}^{3}, T_{L}^{3}\right\} L\right)=\operatorname{Tr}\left(\left\{T_{L}^{3}, T_{L}^{3}\right\} B\right)=\frac{1}{2} \\
\operatorname{Tr}(\{Y, Y\}(B-L))=0, \operatorname{Tr}\left(\left\{T_{L}^{3}, T_{L}^{3}\right\}(B-L)\right)=0, \ldots, \operatorname{Tr}(B-L)^{3} \neq 0
\end{gathered}
$$

With 3 RH neutrinos:

$$
\operatorname{Tr}(B-L)^{3}=0
$$

B-L can be gauged !

Charge dequantization in the SM with Dirac neutrinos

Symmetry argument: B and L anomalies in the SM

$$
\begin{gathered}
\operatorname{Tr}(\{Y, Y\} L)=\operatorname{Tr}(\{Y, Y\} B)=-\frac{1}{2} \quad \operatorname{Tr}\left(\left\{T_{L}^{3}, T_{L}^{3}\right\} L\right)=\operatorname{Tr}\left(\left\{T_{L}^{3}, T_{L}^{3}\right\} B\right)=\frac{1}{2} \\
\operatorname{Tr}(\{Y, Y\}(B-L))=0, \operatorname{Tr}\left(\left\{T_{L}^{3}, T_{L}^{3}\right\}(B-L)\right)=0, \ldots, \operatorname{Tr}(B-L)^{3} \neq 0
\end{gathered}
$$

With 3 RH neutrinos:

$$
\operatorname{Tr}(B-L)^{3}=0
$$

B-L can be gauged !
$Y \rightarrow Y+\varepsilon(B-L)$ is a again a perfectly consistent hypercharge, $\varepsilon=-Y_{N}$

Charge dequantization in the SM with Dirac neutrinos

Symmetry argument: B and L anomalies in the SM

$$
\begin{gathered}
\operatorname{Tr}(\{Y, Y\} L)=\operatorname{Tr}(\{Y, Y\} B)=-\frac{1}{2} \quad \operatorname{Tr}\left(\left\{T_{L}^{3}, T_{L}^{3}\right\} L\right)=\operatorname{Tr}\left(\left\{T_{L}^{3}, T_{L}^{3}\right\} B\right)=\frac{1}{2} \\
\operatorname{Tr}(\{Y, Y\}(B-L))=0, \operatorname{Tr}\left(\left\{T_{L}^{3}, T_{L}^{3}\right\}(B-L)\right)=0, \ldots, \operatorname{Tr}(B-L)^{3} \neq 0
\end{gathered}
$$

With 3 RH neutrinos:

$$
\operatorname{Tr}(B-L)^{3}=0
$$

B-L can be gauged !
$Y \rightarrow Y+\varepsilon(B-L)$ is a again a perfectly consistent hypercharge, $\varepsilon=-Y_{N}$

Experimentally (neutron neutrality): $|\varepsilon|<10^{-21}$

Another interesting feature of $B-L . .$.

$$
\begin{array}{cccc}
& T_{L}^{3} & Y & Q \\
\binom{u}{d}_{L} & +\frac{1}{2} & +\frac{1}{2} & +\frac{1}{6} \\
+\frac{2}{3} \\
u_{R} & 0 & +\frac{1}{3} \\
d_{R} & 0 & -\frac{2}{3} & +\frac{2}{3} \\
& & & -\frac{1}{3} \\
\binom{\nu_{e}}{e}_{L} & +\frac{1}{2} & -\frac{1}{2} & 0 \\
& -\frac{1}{2} & & -1 \\
\nu_{R} & 0 & 0 & 0 \\
e_{R} & 0 & -1 & -1
\end{array}
$$

Another interesting feature of $B-L . .$.

$$
\begin{aligned}
& T_{L}^{3} \quad Y \quad Q \quad(B-L) / 2 \\
& \begin{array}{llll}
\binom{u}{d}_{L} & \begin{array}{lll}
+\frac{1}{2} & +\frac{1}{6} & +\frac{2}{3} \\
-\frac{1}{2}
\end{array} & \begin{array}{l}
-\frac{1}{3}
\end{array}
\end{array} \\
& +\frac{1}{6} \\
& u_{R} \\
& 0 \quad+\frac{2}{3} \\
& +\frac{2}{3} \\
& d_{R} \\
& 0 \quad-\frac{1}{3} \\
& -\frac{1}{3} \\
& +\frac{1}{6} \\
& \begin{array}{ccccc}
\binom{\nu_{e}}{e}_{L} & \begin{array}{c}
+\frac{1}{2} \\
-\frac{1}{2}
\end{array} & -\frac{1}{2} & 0 & -1
\end{array} \\
& \nu_{R} \\
& 0 \quad 0 \\
& 0 \begin{array}{lll}
0 & -1 & -1
\end{array} \\
& -\frac{1}{2}
\end{aligned}
$$

Another interesting feature of $B-L . .$.

$$
\begin{array}{ccccc}
& T_{L}^{3} & Y & Q & (B-L) / 2 \\
\binom{u}{d}_{L} & \begin{array}{c}
+\frac{1}{2} \\
-\frac{1}{2}
\end{array} & \boxed{+\frac{1}{6}} & \begin{array}{c}
+\frac{2}{3} \\
-\frac{1}{3}
\end{array} & \boxed{+\frac{1}{6}} \\
u_{R} & 0 & +\frac{2}{3} & +\frac{2}{3} & \\
d_{R} & 0 & -\frac{1}{3} & -\frac{1}{3} & +\frac{1}{6} \\
\binom{\nu_{e}}{e}_{L} & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & 0 \\
\nu_{R} & 0 & 0 & 0 & -1 \\
e_{R} & 0 & -1 & -1 & -\frac{1}{2} \\
\hline
\end{array}
$$

Another interesting feature of $B-L . .$.

$$
\begin{align*}
& T_{L}^{3} \quad Y \\
& Q \\
& (B-L) / 2 \\
& \begin{array}{ll}
\binom{u}{d}_{L} & \begin{array}{l}
+\frac{1}{2} \\
-\frac{1}{2}
\end{array}
\end{array} \tag{1}\\
& +\frac{2}{3} \\
& -\frac{1}{3} \\
& +\frac{1}{6} \tag{0}\\
& u_{R} \\
& d_{R} \\
& +\frac{2}{3} \\
& -\frac{1}{3} \\
& +\frac{1}{6} \\
& +\frac{1}{2} \\
& -\frac{1}{2} \\
& \binom{\nu_{e}}{e}_{L} \quad \begin{array}{c}
+\frac{1}{2} \\
-\frac{1}{2}
\end{array} \quad \begin{array}{|c|}
\hline \frac{1}{2}
\end{array} \begin{array}{c}
0 \\
-1
\end{array} \\
& \begin{array}{l}
\nu_{R} \\
e_{R}
\end{array} \\
& \begin{array}{l}
+\frac{1}{2} \\
-\frac{1}{2}
\end{array}
\end{align*}
$$

Another interesting feature of $B-L \ldots$

$$
\begin{align*}
& T_{L}^{3} \quad Y \\
& \begin{array}{ll}
\binom{u}{d}_{L} & \begin{array}{l}
+\frac{1}{2} \\
-\frac{1}{2}
\end{array}
\end{array} \tag{0}\\
& +\frac{1}{6} \\
& +\frac{2}{3} \\
& -\frac{1}{3} \\
& (B-L) / 2 \\
& Q \\
& +\frac{1}{6} \\
& +\frac{2}{3} \\
& -\frac{1}{3} \\
& +\frac{1}{6} \\
& +\frac{1}{2} \\
& -\frac{1}{2} \\
& \binom{\nu_{e}}{e}_{L} \quad \begin{array}{c}
+\frac{1}{2} \\
-\frac{1}{2}
\end{array} \begin{array}{|}
-\frac{1}{2} & \begin{array}{c}
0 \\
-1
\end{array} & \boxed{-\frac{1}{2}}
\end{array} \tag{0}\\
& \begin{array}{c}
\nu_{R} \\
e_{R}
\end{array} \\
& \text { T33-like } \\
& \text { generator } \\
& \text { for RH fields! } \\
& +\frac{1}{2} \\
& -\frac{1}{2}
\end{align*}
$$

Another interesting feature of $B-L \ldots$

$$
\begin{align*}
& T_{L}^{3} \quad Y \quad Q \quad(B-L) / 2 \\
& \binom{u}{d}_{L} \quad \begin{array}{l}
+\frac{1}{2} \\
-\frac{1}{2}
\end{array}++\frac{1}{6} \quad \begin{array}{l}
+\frac{2}{3} \\
-\frac{1}{3}
\end{array} \quad++\frac{1}{6} \tag{0}\\
& \text { T3-like } \\
& \text { generator } \\
& \text { for RH fields! } \\
& +\frac{1}{2} \\
& -\frac{1}{2} \\
& +\frac{1}{2} \\
& -\frac{1}{2}
\end{align*}
$$

Majorana spinors

E. Majorana 1937:

Neutral spinor can be massive even with 2 components only!!!

E. Majorana

Majorana spinors

E. Majorana I937:

Neutral spinor can be massive even with 2 components only!!!

E. Majorana

RH neutrino is a full $\operatorname{SU}(3) \times S U(2)$ singlet

$$
\mathcal{L} \ni \bar{L}_{L} Y_{\nu} N_{R} \tilde{H}+\frac{1}{2} N_{R}^{T} C M_{R} N_{R}+h . c .
$$

Majorana spinors

E. Majorana 1937:

Neutral spinor can be massive even with 2 components only!!!

> E. Majorana

RH neutrino is a full $\operatorname{SU}(3) \times S U(2)$ singlet

$$
\mathcal{L} \ni \bar{L}_{L} Y_{\nu} N_{R} \tilde{H}+\frac{1}{2} N_{R}^{T} C M_{R} N_{R}+h . c .
$$

If we engage this, the $\mathbf{N}_{\mathbf{R}}$ hypercharge must be zero!
Charge quantization through anomalies restored!

Seesaw mechanism

P. Minkowski, Phys. Lett. B67, 42 I (1977)

$$
\begin{gathered}
\mathcal{L} \ni \bar{\nu}_{L} m_{D} N_{R}+\frac{1}{2} M_{R} N_{R}^{T} C N_{R}+h . c .=\frac{1}{2} n_{L}^{T} C \mathcal{M} n_{L}+h . c . \\
\mathcal{M}=\left(\begin{array}{cc}
0 & m_{D} \\
m_{D} & M_{R}
\end{array}\right) \quad n_{L}=\binom{\nu_{L}}{\left(N_{R}\right)^{C}}
\end{gathered}
$$

Seesaw mechanism

P. Minkowski, Phys. Lett. B67, 42I (I977)

$$
\begin{gathered}
\mathcal{L} \ni \bar{\nu}_{L} m_{D} N_{R}+\frac{1}{2} M_{R} N_{R}^{T} C N_{R}+\text { h.c. }=\frac{1}{2} n_{L}^{T} C \mathcal{M} n_{L}+\text { h.c. } \\
\mathcal{M}=\left(\begin{array}{cc}
0 & m_{D} \\
m_{D} & M_{R}
\end{array}\right) \quad n_{L}=\binom{\nu_{L}}{\left(N_{R}\right)^{C}}
\end{gathered}
$$

Suppose $m_{D} \ll M_{R}$:
$m_{1}=-\frac{m_{D}^{2}}{M_{R}}$
$n_{1} \propto \nu_{L}+\mathcal{O}\left(\frac{m_{D}}{M_{R}}\right)\left(N_{R}\right)^{c}$
$m_{2}=M_{R}$

$$
n_{2} \propto\left(N_{R}\right)^{c}+\mathcal{O}\left(\frac{m_{D}}{M_{R}}\right) \nu_{L}
$$

Seesaw mechanism

P. Minkowski, Phys. Lett. B67, 42 I (1977)

$$
\begin{aligned}
& \mathcal{L} \ni \bar{\nu}_{L} m_{D} N_{R}+\frac{1}{2} M_{R} N_{R}^{T} C N_{R}+\text { h.c. }=\frac{1}{2} n_{L}^{T} C \mathcal{M} n_{L}+\text { h.c. } \\
& \mathcal{M}=\left(\begin{array}{cc}
0 & m_{D} \\
m_{D} & M_{R}
\end{array}\right) \quad n_{L}=\binom{\nu_{L}}{\left(N_{R}\right)^{C}}
\end{aligned}
$$

Suppose $m_{D} \ll M_{R}$:
$m_{1}=-\frac{m_{D}^{2}}{M_{R}}$

$$
n_{1} \propto \nu_{L}+\mathcal{O}\left(\frac{m_{D}}{M_{R}}\right)\left(N_{R}\right)^{c}
$$

$m_{2}=M_{R}$

$$
n_{2} \propto\left(N_{R}\right)^{c}+\mathcal{O}\left(\frac{m_{D}}{M_{R}}\right) \nu_{L}
$$

Neutrino masses are naturally suppressed if M_{R} is large!

NB the argument is not water-tight (Yukawas self-renormalize)
$M_{R} \sim 10^{12-14} \mathrm{GeV}$

Lepton number violation (?)

L and B are not sacred in the SM anyway...

Renormalizable case: anomalous global symmetries

- Instantons (at zeroT) cause $9 q+3 l \leftrightarrow \emptyset$

L and B are not sacred in the SM anyway...

Renormalizable case: anomalous global symmetries

- Instantons (at zero T) cause $9 q+3 l \leftrightarrow \emptyset$

$$
{ }^{3} H e \rightarrow e^{+} \mu^{+} \bar{\nu}_{\tau}
$$

L and B are not sacred in the SM anyway...

Renormalizable case: anomalous global symmetries

- Instantons (at zero T) cause $9 q+3 l \leftrightarrow \emptyset$

$$
{ }^{3} \mathrm{He} \rightarrow e^{+} \mu^{+} \bar{\nu}_{\tau} \quad \mathcal{A} \sim 10^{-\mathcal{O}(200)}
$$

L and B are not sacred in the SM anyway...

Renormalizable case: anomalous global symmetries

- Instantons (at zero T) cause $9 q+3 l \leftrightarrow \emptyset$

$$
{ }^{3} \mathrm{He} \rightarrow e^{+} \mu^{+} \bar{\nu}_{\tau} \quad \mathcal{A} \sim 10^{-\mathcal{O}(200)}
$$

- Sphalerons (at high T) make the tunneling efficient \Rightarrow early Universe Kuzmin,V. Rubakov, M. Shaposhnikov, PLBI55, I 985

L and B are not sacred in the SM anyway...

Renormalizable case: anomalous global symmetries

- Instantons (at zero T) cause $9 q+3 l \leftrightarrow \emptyset$

$$
{ }^{3} H e \rightarrow e^{+} \mu^{+} \bar{\nu}_{\tau} \quad \mathcal{A} \sim 10^{-\mathcal{O}(200)}
$$

- Sphalerons (at high T) make the tunneling efficient $\underset{\sim}{\boldsymbol{p}}$ early Universe Kuzmin, V. Rubakov, M. Shaposhnikov, PLBI55, I985

Non-renormalizable (effective) case: L broken explicitly at d=5

$$
\begin{aligned}
& \mathcal{L}_{5} \sim \frac{c}{\Lambda}\left(L^{T} i \sigma_{2} H\right) C\left(H^{T} i \sigma_{2} L\right) \quad \text { Weinberg's operator } \\
& \text { S.Weinberg, PRL43, I } 566 \text { (I979) }
\end{aligned}
$$

PMNS mixing in the Majorana case

Maiorana mass

$$
\frac{1}{2} m \psi_{L}^{T} C \psi_{L}+h . c .
$$

PMNS mixing in the Majorana case

Majorana mass

$$
\frac{1}{2} m \psi_{L}^{T} C \psi_{L}+h . c .
$$

The same field transposed, not opposite chirality fields bared!

PMNS mixing in the Majorana case

Majorana mass

$$
\frac{1}{2} m \psi_{L}^{T} C \psi_{L}+h . c .
$$

The same field transposed, not opposite chirality fields bared!

$$
\begin{gathered}
\text { Charged currents: } \mathcal{L} \ni \frac{g}{\sqrt{2}} \overline{\ell_{L}^{\alpha}} \gamma^{\mu} U_{\alpha i} \nu_{L}^{i} W_{\mu}^{-}+h . c . \\
U=\left(\begin{array}{ccc}
c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i \delta} \\
-s_{12} c_{23}-c_{12} s_{23} s_{13} e^{i \delta} & c_{12} c_{23}-s_{12} s_{23} s_{13} e^{i \delta} & s_{23} c_{13} \\
s_{12} s_{23}-c_{12} c_{23} s_{13} e^{i \delta} & -c_{12} s_{23}-s_{12} c_{23} s_{13} e^{i \delta} & c_{23} c_{13}
\end{array}\right)
\end{gathered}
$$

PMNS mixing in the Majorana case

Majorana mass

$$
\frac{1}{2} m \psi_{L}^{T} C \psi_{L}+h . c .
$$

The same field transposed, not opposite chirality fields bared!

$$
\begin{gathered}
\text { Charged currents: } \mathcal{L} \ni \frac{g}{\sqrt{2}} \overline{\ell_{L}^{\alpha}} \gamma^{\mu} U_{\alpha i} \nu_{L}^{i} W_{\mu}^{-}+h . c . \\
U=\left(\begin{array}{ccc}
c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i \delta} \\
-s_{12} c_{23}-c_{12} s_{23} s_{13} e^{i \delta} & c_{12} c_{23}-s_{12} s_{23} s_{13} e^{i \delta} & s_{23} c_{13} \\
s_{12} s_{23}-c_{12} c_{23} s_{13} e^{i \delta} & -c_{12} s_{23}-s_{12} c_{23} s_{13} e^{i \delta} & c_{23} c_{13}
\end{array}\right)\left(\begin{array}{c}
1 \\
e^{i \alpha_{1}} \\
\\
\\
e^{i \alpha_{2}}
\end{array}\right)
\end{gathered}
$$

PMNS mixing in the Majorana case

Majorana mass

$$
\frac{1}{2} m \psi_{L}^{T} C \psi_{L}+h . c .
$$

The same field transposed, not opposite chirality fields bared!

$$
\begin{gathered}
\text { Charged currents: } \mathcal{L} \ni \frac{g}{\sqrt{2}} \overline{\ell_{L}^{\alpha}} \gamma^{\mu} U_{\alpha i} \nu_{L}^{i} W_{\mu}^{-}+h . c . \\
U=\left(\begin{array}{ccc}
c_{12} c_{13} & s_{12} c_{13} & s_{13} e^{-i \delta} \\
-s_{12} c_{23}-c_{12} s_{23} s_{13} e^{i \delta} & c_{12} c_{23}-s_{12} s_{23} s_{13} e^{i \delta} & s_{23} c_{13} \\
s_{12} s_{23}-c_{12} c_{23} s_{13} e^{i \delta} & -c_{12} s_{23}-s_{12} c_{23} s_{13} e^{i \delta} & c_{23} c_{13}
\end{array}\right)\left(\begin{array}{c}
1 \\
\\
e^{i \alpha_{1}} \\
\\
\\
e^{i \alpha_{2}}
\end{array}\right)
\end{gathered}
$$

3 physical CP phases (I Dirac, 2 Majorana)!

L violation in neutrinoless double beta decay

Double beta decay

"Standard" double beta decay: $\quad 2 n \rightarrow 2 p^{+}+2 e^{-}+2 \bar{\nu}$

Double beta decay

"Standard" double beta decay: $\quad 2 n \rightarrow 2 p^{+}+2 e^{-}+2 \bar{\nu}$

Isotopes: ${ }^{48} \mathrm{Ca},{ }^{76} \mathrm{Ge},{ }^{82 \mathrm{Se},}{ }^{96} \mathrm{Zr},{ }^{100 \mathrm{Mo},}{ }^{116} \mathrm{Cd},{ }^{130} \mathrm{Te},{ }^{136} \mathrm{Xe},{ }^{150 \mathrm{Nd}}$

Double beta decay

"Standard" double beta decay: $\quad 2 n \rightarrow 2 p^{+}+2 e^{-}+2 \bar{\nu}$

Isotopes: ${ }^{48} \mathrm{Ca},{ }^{76} \mathrm{Ge},{ }^{82} \mathrm{Se},{ }^{96} \mathrm{Zr},{ }^{100 \mathrm{Mo},}{ }^{116} \mathrm{Cd},{ }^{130} \mathrm{Te},{ }^{136} \mathrm{Xe},{ }^{150 \mathrm{Nd}}$

Double beta decay

"Standard" double beta decay: $\quad 2 n \rightarrow 2 p^{+}+2 e^{-}+2 \bar{\nu}$ Neutrinoless double beta decay: $2 n \rightarrow 2 p^{+}+2 e^{-}+0 \bar{\nu}$ Isotopes: ${ }^{48} \mathrm{Ca},{ }^{76} \mathrm{Ge},{ }^{82 \mathrm{Se},}{ }^{96} \mathrm{Zr},{ }^{100 \mathrm{Mo},}{ }^{116} \mathrm{Cd},{ }^{130} \mathrm{Te},{ }^{136} \mathrm{Xe},{ }^{150 \mathrm{Nd}}$

Neutrinoless double beta decay - lifetime estimates

Diagrammatics:

Neutrinoless double beta decay - lifetime estimates

Diagrammatics:

$$
\mathcal{A} \propto g^{4} \frac{\langle m\rangle}{q^{2}}
$$

Neutrinoless double beta decay - lifetime estimates

$$
\mathcal{A} \propto g^{4} \frac{\langle m\rangle}{q^{2}}
$$

Figures from Chakrabortty et al., 2012

Neutrinoless double beta decay - lifetime estimates

Diagrammatics:

Figures from Chakrabortty et al., 2012

Neutrinoless double beta decay - lifetime estimates

Diagrammatics:

$$
\mathcal{A} \propto g^{4} \frac{\langle m\rangle}{q^{2}}
$$

Heavy neutrinos also feel gauge interactions!

Figures from Chakrabortty et al., 2012

Neutrinoless double beta decay - lifetime estimates

Diagrammatics:

$\mathcal{A} \propto g^{4} \frac{\langle m\rangle}{q^{2}}$

Heavy neutrinos also feel gauge interactions!

Figures from Chakrabortty et al., 2012

Neutrinoless double beta decay - lifetime estimates

Diagrammatics:

$\mathcal{A} \propto g^{4} \frac{\langle m\rangle}{q^{2}}$

Heavy neutrinos also feel gauge interactions!

$\mathcal{A} \propto g^{4} \sum_{i} F^{2} \frac{\kappa}{M_{i}}$

Is this a test of the Majorana nature of neutrinos?

What if there is something else?

Is this a test of the Majorana nature of neutrinos?

What if there is something else?

Is this a test of the Majorana nature of neutrinos?

What if there is something else?

That actually does not make a difference...

J. Schechter, J. F. W. Valle, PRD 1982 Takasugi, PLB 1984

Is this a test of the Majorana nature of neutrinos?

What if there is something else?

That actually does not make a difference...

J. Schechter, J. F. W. Valle, PRD 1982 Takasugi, PLB 1984

Is this a test of the Majorana nature of neutrinos?

What if there is something else?

That actually does not make a difference...

J. Schechter, J. F. W. Valle, PRD 1982

Takasugi, PLB 1984

If neutrinoless double beta decay is seen, neutrinos are inevitably Majorana...

L violation in cosmology (?)

The η_{B} issue of the $S M$

Baryon to photon \# density:

$$
\frac{n_{B}}{n_{\gamma}} \equiv \eta_{B}=(6.1 \pm 0.3) \times 10^{-10}
$$

The η_{B} issue of the $S M$

Baryon to photon \# density:

$$
\frac{n_{B}}{n_{\gamma}} \equiv \eta_{B}=(6.1 \pm 0.3) \times 10^{-10}
$$

This is actually a huge number!

The η_{B} issue of the $S M$

Baryon to photon \# density:

$$
\frac{n_{B}}{n_{\gamma}} \equiv \eta_{B}=(6.1 \pm 0.3) \times 10^{-10}
$$

This is actually a huge number!

Symmetric initial conditions: (+ Standard model)

$$
\eta_{\mathrm{SM}} \approx 10^{-18}
$$

Cooking up a primordial baryon asymmetry

Cooking up a primordial baryon asymmetry

I967: Sacharov's baryogenesis conditions

Cooking up a primordial baryon asymmetry

I 967: Sacharov's baryogenesis conditions

- Baryon number violation
- $\quad \mathrm{C}$ and CP violation

- Departure from thermal equilibrium

Cooking up a primordial baryon asymmetry

1967: Sacharov's baryogenesis conditions

- Baryon number violation this is clear...
- C and CP violation

- Departure from thermal equilibrium

Cooking up a primordial baryon asymmetry

1967: Sacharov's baryogenesis conditions

- Baryon number violation this is clear...
- C and $C P$ violation
 $\Gamma(X \rightarrow Y+B)=\Gamma(\bar{X} \rightarrow \bar{Y}+\bar{B})$
- Departure from thermal equilibrium

Cooking up a primordial baryon asymmetry

1967: Sacharov's baryogenesis conditions

- Baryon number violation this is clear...
- C and $C P$ violation
 $\Gamma(\mathrm{X} \rightarrow \mathrm{Y}+\mathrm{B}) \neq \Gamma(\overline{\mathrm{X}} \rightarrow \overline{\mathrm{Y}}+\overline{\mathrm{B}})$
- Departure from thermal equilibrium

Cooking up a primordial baryon asymmetry

I 967: Sacharov's baryogenesis conditions

- Baryon number violation this is clear...
- C and $C P$ violation
 $\Gamma(\mathrm{X} \rightarrow \mathrm{Y}+\mathrm{B}) \neq \Gamma(\overline{\mathrm{X}} \rightarrow \overline{\mathrm{Y}}+\overline{\mathrm{B}})$
- Departure from thermal equilibrium $\Gamma(\mathrm{X} \rightarrow \mathrm{Y}+\mathrm{B})=\Gamma(\mathrm{Y}+\mathrm{B} \rightarrow \mathrm{X})$

Cooking up a primordial baryon asymmetry

I 967: Sacharov's baryogenesis conditions

- Baryon number violation this is clear...
- C and $C P$ violation
 $\Gamma(\mathrm{X} \rightarrow \mathrm{Y}+\mathrm{B}) \neq \Gamma(\overline{\mathrm{X}} \rightarrow \overline{\mathrm{Y}}+\overline{\mathrm{B}})$
- Departure from thermal equilibrium $\Gamma(\mathrm{X} \rightarrow \mathrm{Y}+\mathrm{B}) \neq \Gamma(\mathrm{Y}+\mathrm{B} \rightarrow \mathrm{X})$

Cooking up a primordial baryon asymmetry

1967: Sacharov's baryogenesis conditions

- Baryon number violation this is clear...
- C and $C P$ violation
 $\Gamma(\mathrm{X} \rightarrow \mathrm{Y}+\mathrm{B}) \neq \Gamma(\overline{\mathrm{X}} \rightarrow \overline{\mathrm{Y}}+\overline{\mathrm{B}})$
- Departure from thermal equilibrium $\Gamma(X \rightarrow Y+B) \neq \Gamma(Y+B \rightarrow X)$

All this is there in the Standard Model (!)

B+L generation during the EW phase transition?

Assume that "bubbles" grow below the EWPT critical temperature...

$$
<\varphi>=0
$$

$B+L$ generation during the EW phase transition?

Assume that "bubbles" grow below the EWPT critical temperature...

$$
\langle\varphi\rangle=0
$$

$B+L$ generation during the EW phase transition?

Assume that "bubbles" grow below the EWPT critical temperature...

$$
\langle\varphi\rangle=0
$$

Bubbles do not form for $\mathrm{m}_{\mathrm{H}}=125 \mathrm{GeV}$, not enough CPV in the SM !!!

Baryogenesis through leptogenesis

 (are we here thanks to Majorana neutrinos?)
Baryogenesis through leptogenesis

Perturbative LNV + nonperturbative BNV enough for baryogenesis
Fukugita, Yanagida, PLBI74, I 986

$$
\frac{n_{B}}{n_{\gamma}} \equiv \eta_{B}=(6.1 \pm 0.3) \times 10^{-10}
$$

Baryogenesis through leptogenesis

Perturbative LNV + nonperturbative BNV enough for baryogenesis
Fukugita, Yanagida, PLBI74, I 986

$$
\frac{n_{B}}{n_{\gamma}} \equiv \eta_{B}=(6.1 \pm 0.3) \times 10^{-10}
$$

I) Net L is generated in the (perturbative) super-heavy neutrino decays:

$$
\text { CP asymmetry: } \quad \epsilon_{1}=\frac{\sum_{\alpha}\left[\Gamma\left(N_{1} \rightarrow \ell_{\alpha} H\right)-\Gamma\left(N_{1} \rightarrow \bar{\ell}_{\alpha} \bar{H}\right)\right]}{\sum_{\alpha}\left[\Gamma\left(N_{1} \rightarrow \ell_{\alpha} H\right)+\Gamma\left(N_{1} \rightarrow \bar{\ell}_{\alpha} \bar{H}\right)\right]}
$$

Baryogenesis through leptogenesis

Perturbative LNV + nonperturbative BNV enough for baryogenesis
Fukugita, Yanagida, PLBI74, I 986

$$
\frac{n_{B}}{n_{\gamma}} \equiv \eta_{B}=(6.1 \pm 0.3) \times 10^{-10}
$$

I) Net L is generated in the (perturbative) super-heavy neutrino decays:

$$
\text { CP asymmetry: } \quad \epsilon_{1}=\frac{\sum_{\alpha}\left[\Gamma\left(N_{1} \rightarrow \ell_{\alpha} H\right)-\Gamma\left(N_{1} \rightarrow \bar{\ell}_{\alpha} \bar{H}\right)\right]}{\sum_{\alpha}\left[\Gamma\left(N_{1} \rightarrow \ell_{\alpha} H\right)+\Gamma\left(N_{1} \rightarrow \bar{\ell}_{\alpha} \bar{H}\right)\right]}
$$

2) Sphalerons provide L to B transitions before EWPT

Kuzmin, Rubakov, Shaposhnikov, PLBI55, I985

Baryogenesis through leptogenesis

CP asymmetry:

$$
\epsilon_{1} \approx-\frac{3}{8 \pi} \frac{1}{\left(Y_{N} Y_{N}^{\dagger}\right)_{11}} \sum_{i=2,3} \operatorname{Im}\left[\left(Y_{N} Y_{N}^{\dagger}\right)_{1 i}^{2}\right] \frac{M_{1}}{M_{i}}
$$

Baryogenesis through leptogenesis

CP asymmetry:

$$
\epsilon_{1} \approx-\frac{3}{8 \pi} \frac{1}{\left(Y_{N} Y_{N}^{\dagger}\right)_{11}} \sum_{i=2,3} \operatorname{Im}\left[\left(Y_{N} Y_{N}^{\dagger}\right)_{1 i}^{2}\right] \frac{M_{1}}{M_{i}}
$$

Davidson-Ibarra bound:
S. Davidson and A. Ibarra, Phys. Lett. B535, 25 (2002)

$$
\left|\epsilon_{1}\right| \leq \frac{3}{16 \pi} \frac{M_{1}\left(m_{3}-m_{2}\right)}{v^{2}}
$$

$$
M_{1} \gtrsim 10^{9} \mathrm{GeV}
$$

