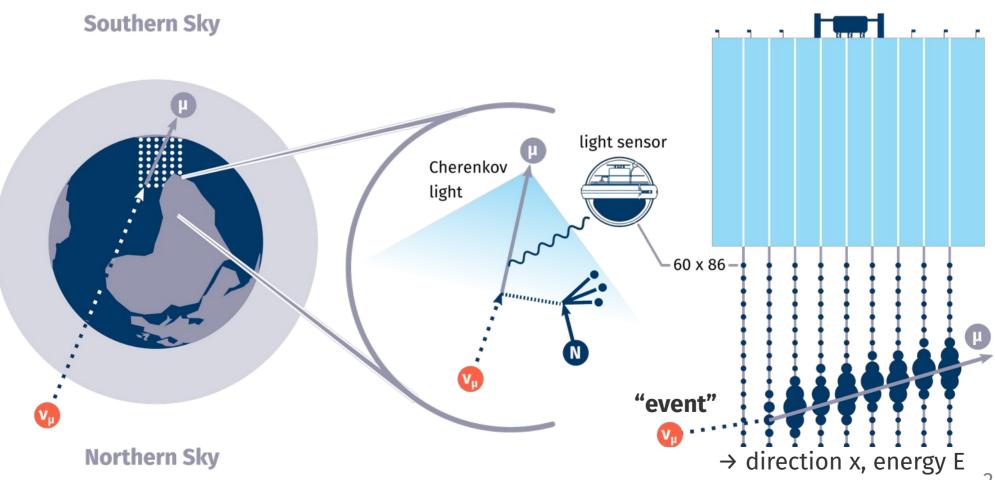
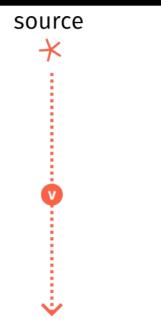
HOW TO SEARCH FOR NEUTRINO SOURCES (SIMPLIFIED VERSION)

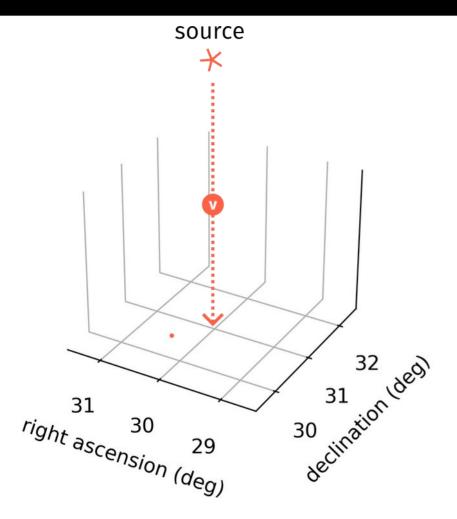
Detecting a neutrino signal with IceCube



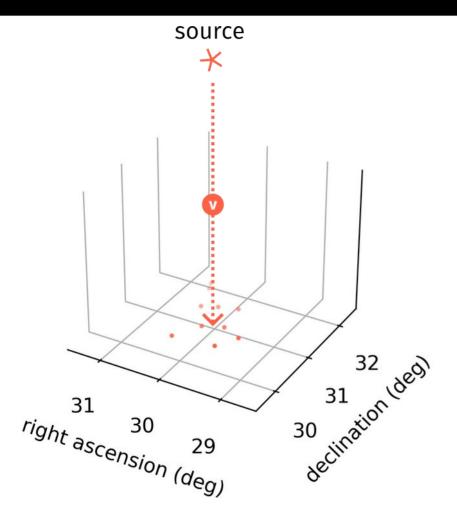


- Simulate (neutrino) events from a source
- Reconstructed directions are random
- More neutrinos
 - \rightarrow denser around the source
 - \rightarrow density as function of direction
 - \rightarrow reveals the **point spread function** (PSF)
- Can be approximated with
 - Kent distribution (Gaussian on a sphere)
 - and a width parameter σ

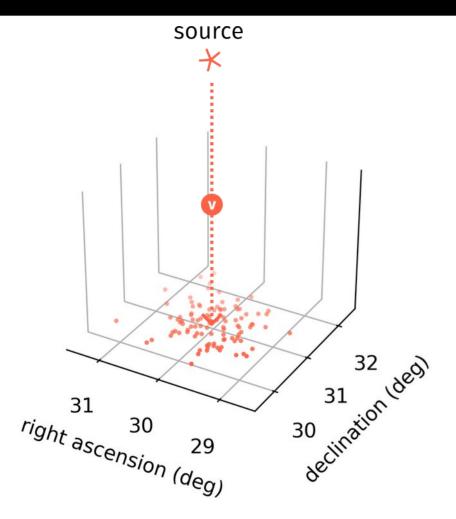
 (actually per event not per source)



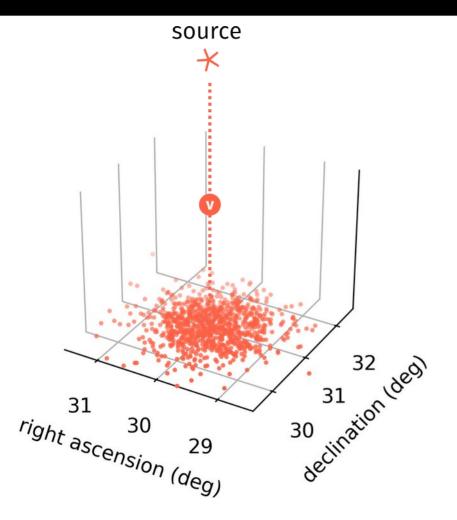
- Simulate (neutrino) events from a source
- Reconstructed directions are random
- More neutrinos
 - \rightarrow denser around the source
 - \rightarrow density as function of direction
 - → reveals the **point spread function** (PSF)
- Can be approximated with
 - Kent distribution (Gaussian on a sphere)
 - and a width parameter σ
 (actually per event not per source)



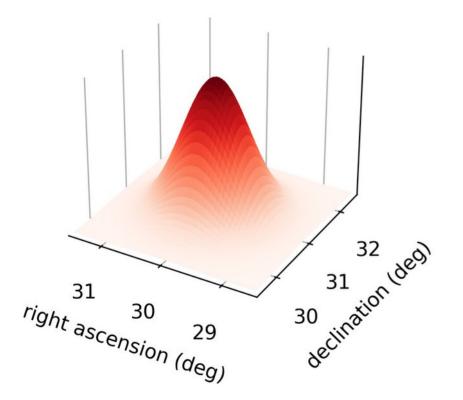
- Simulate (neutrino) events from a source
- Reconstructed directions are random
- More neutrinos
 - \rightarrow denser around the source
 - \rightarrow density as function of direction
 - → reveals the **point spread function** (PSF)
- Can be approximated with
 - Kent distribution (Gaussian on a sphere)
 - and a width parameter σ
 (actually per event not per source)



- Simulate (neutrino) events from a source
- Reconstructed directions are random
- More neutrinos
 - \rightarrow denser around the source
 - \rightarrow density as function of direction
 - → reveals the **point spread function** (PSF)
- Can be approximated with
 - Kent distribution (Gaussian on a sphere)
 - and a width parameter σ
 (actually per event not per source)

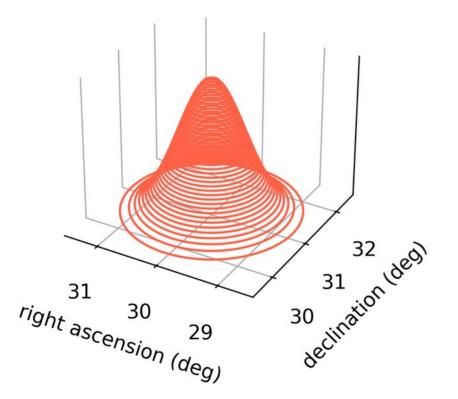


- Simulate (neutrino) events from a source
- Reconstructed directions are random
- More neutrinos
 - \rightarrow denser around the source
 - \rightarrow density as function of direction
 - → reveals the **point spread function** (PSF)
- Can be approximated with
 - Kent distribution (Gaussian on a sphere)
 - and a width parameter σ
 (actually per event not per source)

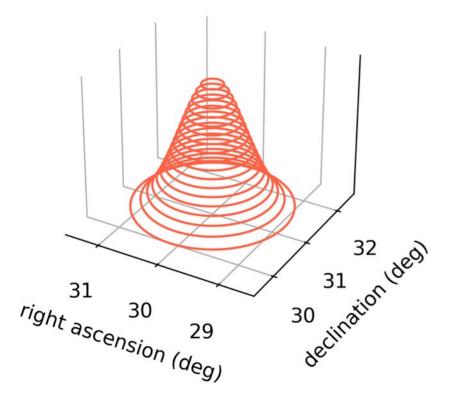


- Simulate (neutrino) events from a source
- Reconstructed directions are random
- More neutrinos
 - \rightarrow denser around the source
 - \rightarrow density as function of direction
 - → reveals the **point spread function** (PSF)
- Can be approximated with
 - Kent distribution (Gaussian on a sphere)
 - and a width parameter σ

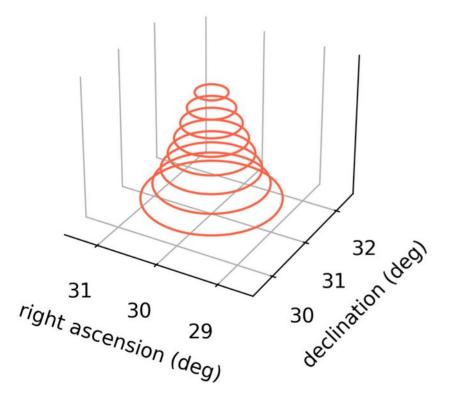
 (actually per event not per source)



- Simulate (neutrino) events from a source
- Reconstructed directions are random
- More neutrinos
 - \rightarrow denser around the source
 - \rightarrow density as function of direction
 - → reveals the **point spread function** (PSF)
- Can be approximated with
 - Kent distribution (Gaussian on a sphere)
 - and a width parameter σ
 (actually per event not per source)

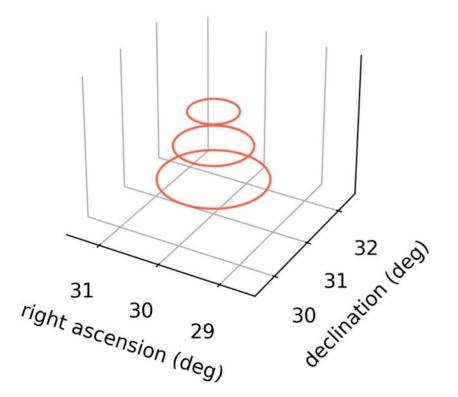


- Simulate (neutrino) events from a source
- Reconstructed directions are random
- More neutrinos
 - \rightarrow denser around the source
 - \rightarrow density as function of direction
 - → reveals the **point spread function** (PSF)
- Can be approximated with
 - Kent distribution (Gaussian on a sphere)
 - and a width parameter σ
 (actually per event not per source)



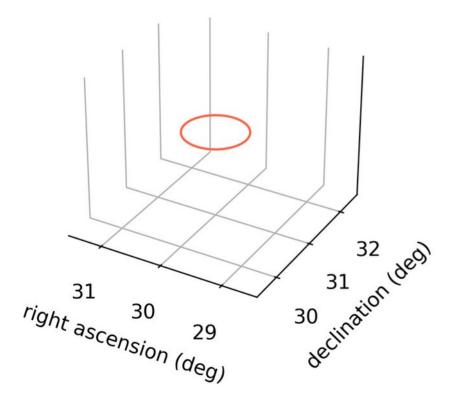
- Simulate (neutrino) events from a source
- Reconstructed directions are random
- More neutrinos
 - \rightarrow denser around the source
 - \rightarrow density as function of direction
 - → reveals the **point spread function** (PSF)
- Can be approximated with
 - Kent distribution (Gaussian on a sphere)
 - and a width parameter σ

 (actually per event not per source)



- Simulate (neutrino) events from a source
- Reconstructed directions are random
- More neutrinos
 - \rightarrow denser around the source
 - \rightarrow density as function of direction
 - → reveals the **point spread function** (PSF)
- Can be approximated with
 - Kent distribution (Gaussian on a sphere)
 - and a width parameter σ

 (actually per event not per source)



- Simulate (neutrino) events from a source
- Reconstructed directions are random
- More neutrinos
 - \rightarrow denser around the source
 - \rightarrow density as function of direction
 - \rightarrow reveals the **point spread function** (PSF)
- Can be approximated with
 - Kent distribution (Gaussian on a sphere)
 - and a width parameter σ

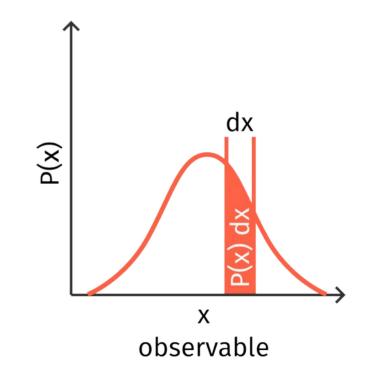
 (actually per event not per source)

- A probability density function (PDF)
 - describes the outcome of observable x
 - (during one event)
 - Prob("event arrives in dx") = P(x) dx
 - ∫ P(x) dx = 1
- Normalize PSF over direction x = (RA, dec)
 - \rightarrow centre on a source

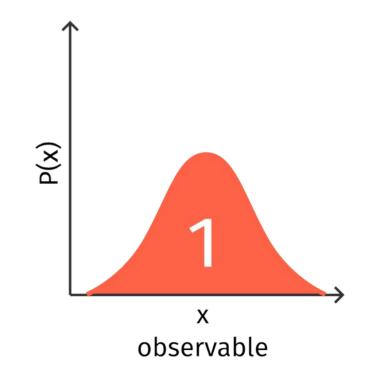
 \rightarrow signal PDF **S(x)** for that source (probability density to be reconstructed at x)

S(x; σ) = Kent(Ψ; σ)

```
with \Psi = angle(event x, source)
```



- A probability density function (PDF)
 - describes the outcome of observable x
 - (during one event)
 - Prob("event arrives in dx") = P(x) dx
 - ∫ P(x) dx = 1
- Normalize PSF over direction x = (RA, dec)
 - \rightarrow centre on a source
 - \rightarrow signal PDF **S(x)** for that source (probability density to be reconstructed at x)
- S(x; σ) = Kent(Ψ; σ)



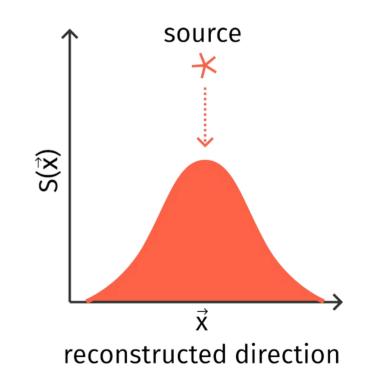
with Ψ = angle(event x, source)

- A probability density function (PDF)
 - describes the outcome of observable x
 - (during one event)
 - Prob("event arrives in dx") = P(x) dx
 - ∫ P(x) dx = 1
- Normalize PSF over direction x = (RA, dec)
 - \rightarrow centre on a source

 \rightarrow signal PDF **S(x)** for that source (probability density to be reconstructed at x)

S(x; σ) = Kent(Ψ; σ)

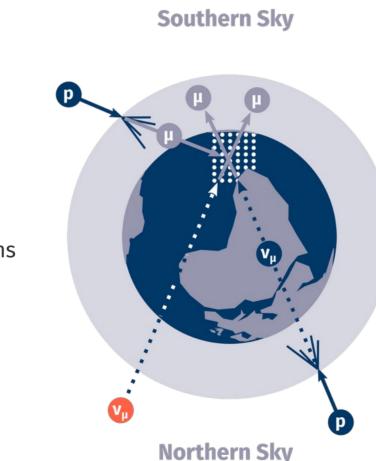
```
with \Psi = angle(event x, source)
```



- A probability density function (PDF)
 - describes the outcome of observable x
 - (during one event)
 - Prob("event arrives in dx") = P(x) dx
 - ∫ P(x) dx = 1
- Normalize PSF over direction x = (RA, dec)
 - \rightarrow centre on a source
 - \rightarrow signal PDF **S(x)** for that source (probability density to be reconstructed at x)
- S(x; σ) = Kent(Ψ; σ)

with Ψ = angle(event x, source)

Backgrounds (for neutrino telescopes)



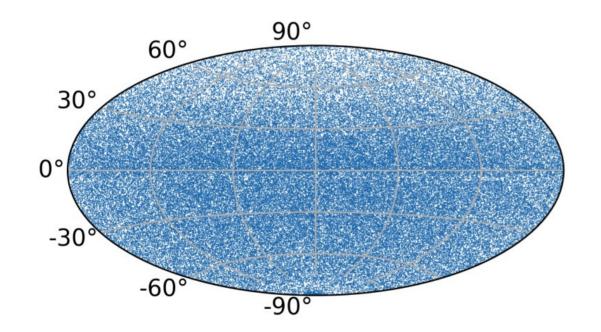
- atmospheric muons (can reduce with event selection)
- atmospheric neutrinos (look like signal events)

→ individual events look like signal this is our **background**

- atmospheric neutrinos
- (muons blocked by the Earth)

Cosmic Rays from all directions

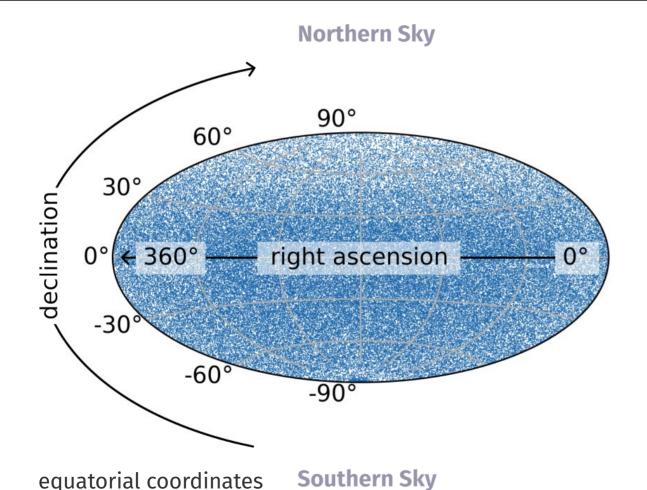
IceCube sky



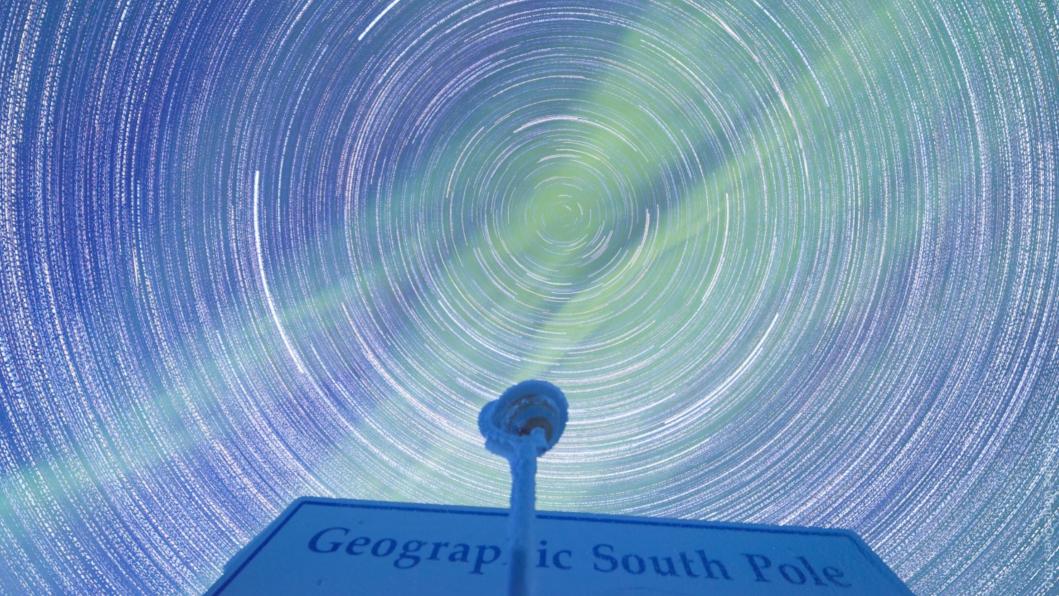
- 1 dot = 1 event
- reconstructed direction
- equatorial coordinates
- One year of data
- Selected to reduce muons
- Still mostly background!
- Can use data to estimate background PDFs

equatorial coordinates

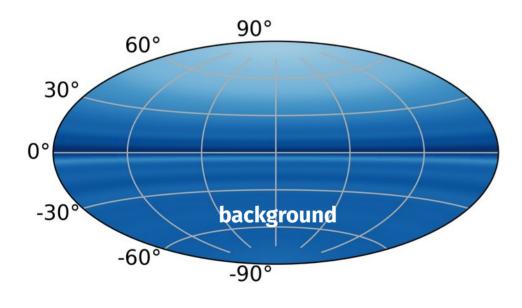
IceCube sky



- 1 dot = 1 event
- reconstructed direction
- equatorial coordinates
- One year of data
- Selected to reduce muons
- Still mostly background!
- Can use data to estimate background PDFs



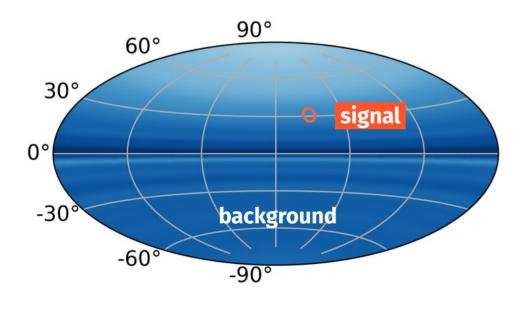
Northern Sky



Southern Sky

- distribution of data events in declination
- assume no dependence on right ascension (which is true for IceCube, **not** others)
 - → background PDF **B(x)**
- shown here as sky map, darker = higher

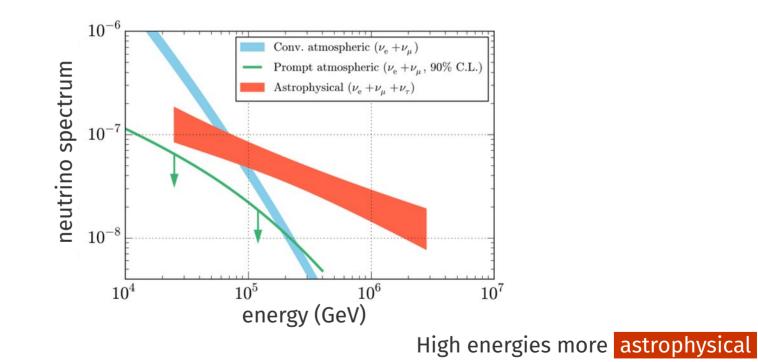
Northern Sky



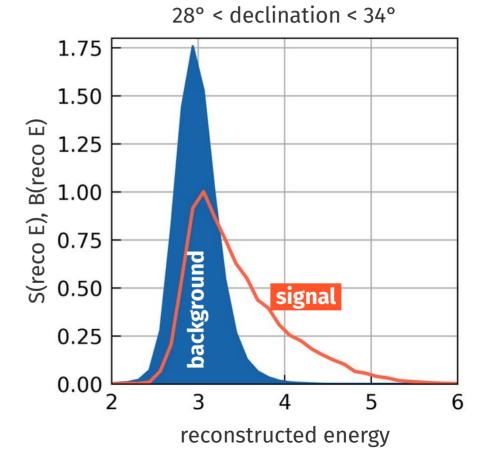
Southern Sky

- distribution of data events in declination
- assume no dependence on right ascension (which is true for IceCube, **not** others)
 - → background PDF **B(x)**
- shown here as sky map, darker = higher

Low energies more atmospheric



Reconstructed energy PDFs



- Reconstructed energy ≠ true energy
- Signal and background are different
- Example shown here
 - \rightarrow additional PDF parameter:
- $S(x) \rightarrow S(x, E) = S(x) S(E; declination)$
- $B(x) \rightarrow B(x, E) = B(x) B(E; declination)$

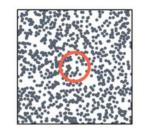
Signal + background

N = 1000

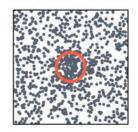
- Data sample of N events
- N is large \rightarrow N \approx N_{expected}
- Our hypothesis:
 - n_s signal events
 - $(N n_s)$ background events
- PDF to describe this data:

$$\left(\frac{n_{\rm S}}{N}\right)S(\vec{x},E) + \left(1 - \frac{n_{\rm S}}{N}\right)B(\vec{x},E)$$

• Given the data, how can we tell if n_s>0?

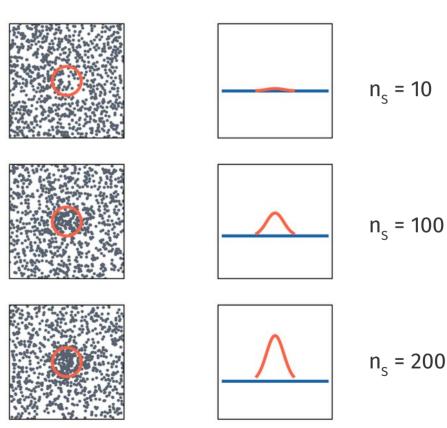






Signal + background

N = 1000



- Data sample of N events
- N is large \rightarrow N \approx N_{expected}
- Our hypothesis:
 - n_s signal events
 - $(N n_s)$ background events
- PDF to describe this data:

$$\left(\frac{n_{\rm S}}{N}\right)S(\vec{x},E) + \left(1 - \frac{n_{\rm S}}{N}\right)B(\vec{x},E)$$

• Given the data, how can we tell if n_s>0?

Ideas?

Likelihood

- Mathematicians came up with this recipe:
 - 1. include the unknown parameters of the hypothesis in a PDF
 - 2. use PDF & data to define a "likelihood" ("probability to obtain this data")
 - 3. find parameter values where L is largest
 → that is the "maximum likelihood estimate"
- In our case:
 - 1. Use the "signal + background" P(x, E)
 - 2. Multiply one term per IceCube event
 - 3. Find $n_s \ge 0$ where L is largest $\rightarrow \hat{n}_s$
 - 4. Interpret the result?

$$L(\vec{a}) = \prod_{i=1}^{N} P(\vec{x}_i; \vec{a})$$

$$L(n_{\rm S}) = \prod_{i=1}^{N} \left[\left(\frac{n_{\rm S}}{N} \right) S(\vec{x}_i, E_i) + \left(1 - \frac{n_{\rm S}}{N} \right) B_i(\vec{x}_i, E_i) \right]$$

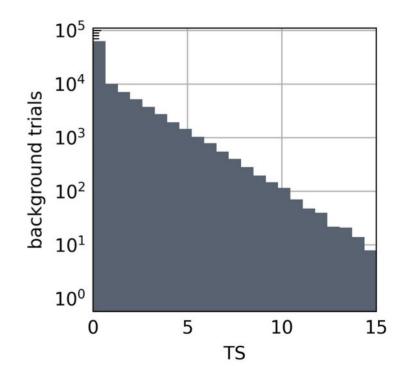
$$L(\hat{n}_{S}) \geq L(n_{S}) \forall n_{S} > 0$$

- Easier to calculate sums than products
 → logarithm of the likelihood
 - \rightarrow complete to Wilks' test statistic
- Properties:
 - TS ≥ 0
 - the higher the TS, the more signal
 - If $\hat{n}_s = 0 \rightarrow TS = 0$
- But can get TS > 0 from pure background!

$$TS = 2 \log \frac{L(\hat{n}_{S})}{L(n_{S} = 0)}$$
$$L(n_{S} = 0) = \prod_{i=1}^{N} B(\vec{x}_{i}, E_{i})$$
$$\Rightarrow TS = 2 \sum_{i=1}^{N} \log \left[\left(\frac{n_{S}}{N} \right) \frac{S}{B}(\vec{x}_{i}, E_{i}) + \left(1 - \frac{n_{S}}{N} \right) \right]$$

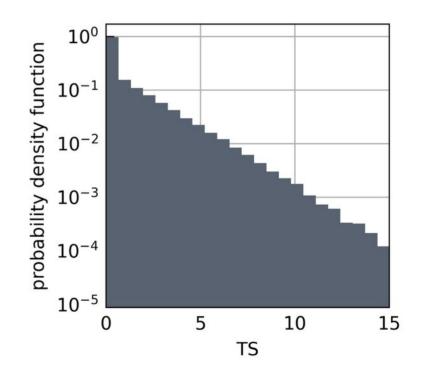
Background fluctuations

- Background can fluctuate to TS > 0
- How can we quantify it?
- Need to simulate that we had multiple trials
- IceCube: randomize right ascension ("scrambling")
 - \rightarrow different events end up near the source
 - \rightarrow these can not come from the source
 - → equivalent to a pure-BG event sample (same detector and event selection)
- For each trial:
 - \rightarrow maximize TS for each "trial"
 - \rightarrow repeat to reveal TS distribution



Background fluctuations

- Background can fluctuate to TS > 0
- How can we quantify it?
- Need to simulate that we had multiple trials
- IceCube: randomize right ascension ("scrambling")
 - \rightarrow different events end up near the source
 - \rightarrow these can not come from the source
 - → equivalent to a pure-BG event sample (same detector and event selection)
- For each trial:
 - \rightarrow maximize TS for each "trial"
 - \rightarrow repeat to reveal TS distribution

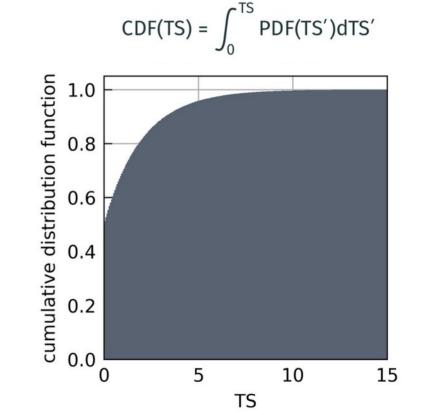


Significance and p-values

- Reject "pure BG" hypothesis for TS > threshold
- Probability to **falsely** reject it is the significance α
- A common (but arbitrary) choice:
 - α = 2.87 x 10⁻⁷
 - "5 sigma"
- Set threshold = real data TS
 - \rightarrow combine with background trials
 - \rightarrow compute survival function

\rightarrow **p-value**

- Most of the time you don't have such a clear result
- So instead we try to interpret

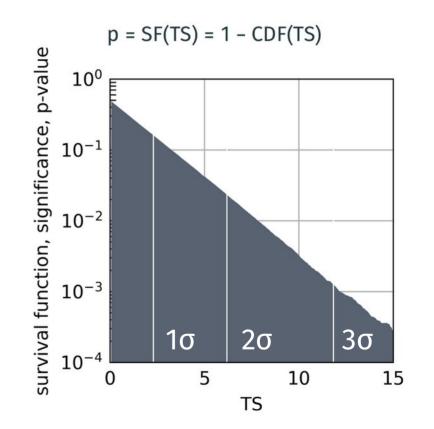


Significance and p-values

- Reject "pure BG" hypothesis for TS > threshold
- Probability to **falsely** reject it is the significance α
- A common (but arbitrary) choice:
 - α = 2.87 x 10⁻⁷
 - "5 sigma"
- Set threshold = real data TS
 - \rightarrow combine with background trials
 - \rightarrow compute survival function

\rightarrow **p-value**

- Most of the time you don't have such a clear result
- So instead we try to interpret

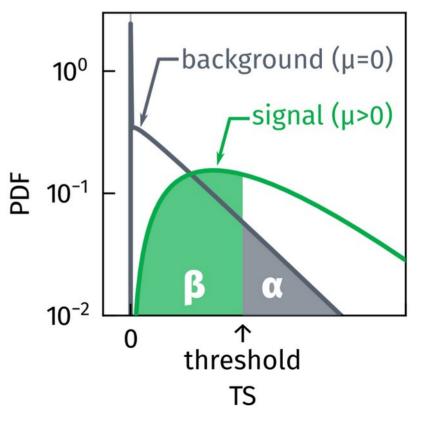


Do not be overimpressed by the attention and mathematical detail that goes into significance. This is largely due to the fact that it is under control and mathematically tractable. The power is usually far more important, but you can often say very little about it as the alternative hypothesis tends to be vague and unquantifiable. When overawed by a discussion of the significance of some test, it is salutary to remember that you can make a valid but meaningless significance test by choosing a random number rbetween 0 and 1 and rejecting the hypothesis if r is less than α .

R. J. Barlow, "Statistics – A Guide to the Use of Statistical Methods in the Physical Sciences"

Less verbose: the work does not end at the p-value.

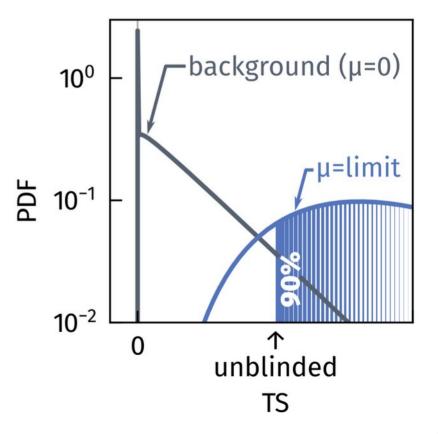
- Generate fake event samples:
 - background + signal $\times\,\mu$
 - i.e. scrambled data + simulation of signal
- Maximize test statistic for each event sample \rightarrow distributions of TS given μ
 - \rightarrow measure power β of a hypothesis test



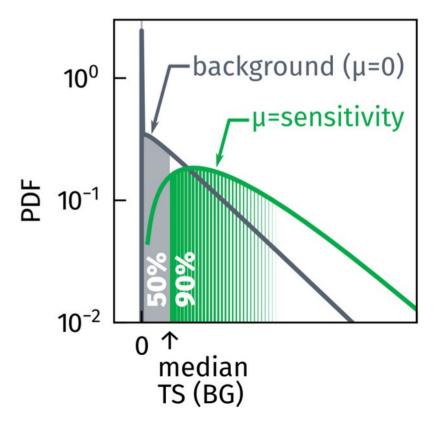
Frequentist upper limit (for our case):

"If the true μ exceeds the upper limit, the probability to get a smaller TS than observed is 10% or less"

- Produce signal trials for a "µ⁽⁹⁰⁾"
- where 10th percentile of TS = TS(data)
- "µ(90)" = the upper limit
 - on that hypothesis
 - at 90% "confidence level" (C.L.)

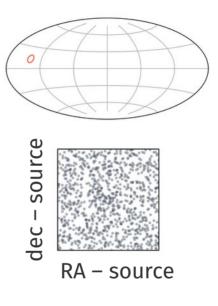


- If we could repeat the experiment,
- and there really was no signal,
- \rightarrow sensitivity = median limit obtained
- Easy to construct in Neyman:
- Find "µ⁽⁹⁰⁾" where 90% of TS > median TS(µ=0)
- Characterizes the analysis
 → can develop it blindly



- Signal still indiscernable?
 - \rightarrow Collect more events
 - Wait for more data or nearly equivalently:
 - Combine multiple sources
- In mathematical terms:
 - add more PDFs
 - single signal PDF replaced by weighted sum
 - \rightarrow can become clearer

(for the right choice of sources and weights)

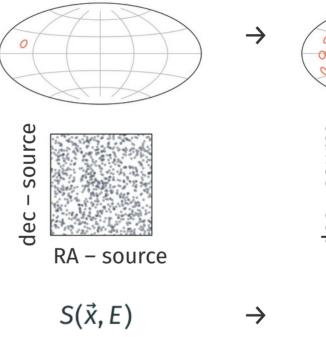


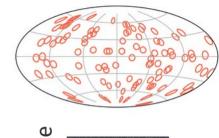
 $S(\vec{x}, E)$

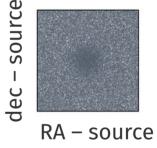
Stacking

- Signal still indiscernable?
 - \rightarrow Collect more events
 - Wait for more data or nearly equivalently:
 - Combine multiple sources
- In mathematical terms:
 - add more PDFs
 - single signal PDF replaced by weighted sum
 - \rightarrow can become clearer

(for the right choice of sources and weights)



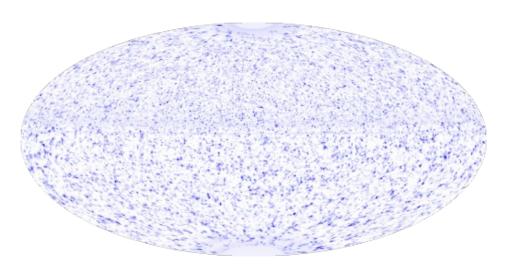




 $\sum_{k \in \text{sources}} w_k S_k(\vec{x}, E)$

All sky scan

- Could also make fewer assumptions
 - no choice of source
 - no choice of source class
- Try all directions, calculate p-value each
- Getting back to a single result:
 - \rightarrow choose smallest p_{min}
- Repeat background trials with this extra step
- Probability to obtain a lower p_{min}
 - $\rightarrow p_{\text{post}}$, larger
- multiplying a trial factor the price we pay



All sky scan

- Could also make fewer assumptions
 - no choice of source
 - no choice of source class
- Try all directions, calculate p-value each
- Getting back to a single result:
 - \rightarrow choose smallest p_{min}
- Repeat background trials with this extra step
- Probability to obtain a lower p_{min}
 - $\rightarrow p_{\text{post}}$, larger
- multiplying a trial factor the price we pay

