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Detecting a neutrino signal with IceCube

“event”

             → direction x, energy E  
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Arrival directions from a source

 Simulate (neutrino) events from a source
 Reconstructed directions are random
 More neutrinos

→ denser around the source
→ density as function of direction
→ reveals the point spread function (PSF)

 Can be approximated with
 Kent distribution

(Gaussian on a sphere)
 and a width parameter σ

(actually per event not per source)
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Signal PDF

 A probability density function (PDF)  P 
 describes the outcome of observable  x 
 (during one event)
  Prob(“event arrives in dx”) = P(x) dx 
  ∫ P(x) dx = 1 

 Normalize PSF over direction x = (RA, dec)
→ centre on a source

→ signal PDF S(x) for that source
(probability density to be reconstructed at x)

 S(x; σ) = Kent(Ψ; σ)

with Ψ = angle(event x, source)
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Backgrounds (for neutrino telescopes)

 atmospheric muons
(can reduce with event selection)

 atmospheric neutrinos
(look like signal events)

 atmospheric neutrinos
 (muons blocked by the Earth)

Cosmic Rays
from all directions

→ individual events look like signal
this is our background
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IceCube sky

 1 dot = 1 event
 reconstructed direction
 equatorial coordinates

 One year of data
 Selected to reduce muons
 Still mostly background!
 Can use data to estimate 

background PDFs

equatorial coordinates
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Background PDF

Northern Sky

background

Southern Sky

 distribution of data events in declination
 assume no dependence on right ascension

(which is true for IceCube, not others)

→ background PDF B(x)
 shown here as sky map, darker = higher
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Background PDF

Northern Sky

background

 signal 

Southern Sky

 distribution of data events in declination
 assume no dependence on right ascension

(which is true for IceCube, not others)

→ background PDF B(x)
 shown here as sky map, darker = higher
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Neutrino energy spectra

High energies more  astrophysical 
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Reconstructed energy PDFs

ba
ck
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 signal 

 Reconstructed energy ≠ true energy
 Signal and background are different
 Example shown here

→ additional PDF parameter:
 S(x) → S(x, E) = S(x) S(E; declination)
 B(x) → B(x, E) = B(x) B(E; declination)
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Signal + background

 Data sample of N events
 N is large → N ≈ Nexpected

 Our hypothesis: 
 nS signal events
 (N – nS) background events

 PDF to describe this data:

 Given the data, how can we tell if nS>0?

N = 1000
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Signal + background

 Data sample of N events
 N is large → N ≈ Nexpected

 Our hypothesis: 
 nS signal events
 (N – nS) background events

 PDF to describe this data:

 Given the data, how can we tell if nS>0?

N = 1000

nS = 10

nS = 100

nS = 200
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Ideas?
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Likelihood

 Mathematicians came up with this recipe:

1. include the unknown parameters
of the hypothesis in a PDF

2. use PDF & data to define a “likelihood”
(“probability to obtain this data”)

3. find parameter values where L is largest
→ that is the “maximum likelihood estimate”

 In our case:

1. Use the “signal + background” P(x, E)

2. Multiply one term per IceCube event
3. Find nS ≥ 0 where L is largest → n̂S

4. Interpret the result?
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Test statistic

 Easier to calculate sums than products
→ logarithm of the likelihood

→ complete to Wilks’ test statistic
 Properties:

 TS ≥ 0
 the higher the TS, the more signal
 If n̂S = 0 → TS = 0 

 But can get TS > 0 from pure background!
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Background fluctuations

 Background can fluctuate to TS > 0
 How can we quantify it?
 Need to simulate that we had multiple trials
 IceCube: randomize right ascension

 (“scrambling”) 

→ different events end up near the source

→ these can not come from the source

→ equivalent to a pure-BG event sample
(same detector and event selection)

 For each trial:

→ maximize TS for each “trial”

→ repeat to reveal TS distribution
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Significance and p-values

 Reject “pure BG” hypothesis for TS > threshold
 Probability to falsely reject it is the significance 

α
 A common (but arbitrary) choice:

 α = 2.87 x 10-7

 “5 sigma”
 Set threshold = real data TS

→ combine with background trials

→ compute survival function

→ p-value
 Most of the time you don’t have such a clear 

result
 So instead we try to interpret 
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 Reject “pure BG” hypothesis for TS > threshold
 Probability to falsely reject it is the significance 

α
 A common (but arbitrary) choice:

 α = 2.87 x 10-7

 “5 sigma”
 Set threshold = real data TS

→ combine with background trials

→ compute survival function
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 Most of the time you don’t have such a clear 

result
 So instead we try to interpret 

1σ      2σ         3σ



R. J. Barlow, “Statistics – A Guide to the Use of Statistical Methods in the Physical Sciences”

Less verbose: the work does not end at the p-value.
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Background + signal trials

 Generate fake event samples:

background + signal  μ⨉
i.e. scrambled data + simulation of signal

 Maximize test statistic for each event sample
→ distributions of TS given μ

→ measure power β of a hypothesis test
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Upper limits

 Frequentist upper limit (for our case):

“If the true μ exceeds the upper limit, the 
probability to get a smaller TS than observed 
is 10% or less”

 Produce signal trials for a “μ(90)”
 where 10th percentile of TS = TS(data)
 “μ(90)” = the upper limit

 on that hypothesis
 at 90% “confidence level" (C.L.)
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Sensitivities

 If we could repeat the experiment,
 and there really was no signal,
 → sensitivity = median limit obtained
 Easy to construct in Neyman:
 Find “μ(90)” where 90% of TS > median TS(μ=0)
 Characterizes the analysis

→ can develop it blindly
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Stacking

 Signal still indiscernable?

→ Collect more events
 Wait for more data

or nearly equivalently:
 Combine multiple sources

 In mathematical terms:
 add more PDFs
 single signal PDF replaced by weighted sum

→ can become clearer

(for the right choice of sources and weights)

RA – source

de
c 

– 
so

ur
ce
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All sky scan

 Could also make fewer assumptions
 no choice of source
 no choice of source class

 Try all directions, calculate p-value each
 Getting back to a single result:

→ choose smallest pmin

 Repeat background trials with this extra step
 Probability to obtain a lower pmin

→ ppost, larger
 multiplying a trial factor – the price we pay
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All sky scan

 Could also make fewer assumptions
 no choice of source
 no choice of source class

 Try all directions, calculate p-value each
 Getting back to a single result:

→ choose smallest pmin

 Repeat background trials with this extra step
 Probability to obtain a lower pmin

→ ppost, larger
 multiplying a trial factor – the price we pay

63%

1% ↓
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