


Measurements of Cosmic Rays

Alexev Yushkov*

*FZU — Institute of Physics of the Czech Academy of Sciences The Pierre Auger Collaboration, Av. San Martín Norte 304, 5613 Malargüe, Argentina

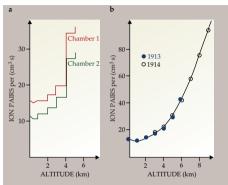
http://www.auger.org

FZU

Fyzikální ústav Akademie věd České republiky

> Faculty of Science

Palacký University Olomour



11th IDPASC school, Olomouc, 29/08-07/09/2022

Discovery of cosmic rays

Victor Franz Hess, balloon flights (1912): cosmic origin of radiation explaining discharge of electroscopes

Figure 3. The rate of atmospheric ionization as a function of altitude, as measured **(a)** by Victor Hess on 7 August 1912, and **(b)** by Werner Kolhörster in 1913. (Adapted from ref. 2.)

Nobel Prize (1936)

"... new vistas for the understanding of the structure and origin of matter"

plot: Physics Today 65, 2, 30 (2012)

Early days and new particles

Dmitri Skobeltsyn (1927): cloud-chamber photo of cosmic ray tracks

Robert Millikan (1928): name "cosmic rays"

Werner Kolhörster and Walther Bothe (1929): coincidence in Geiger-Müller counters interlaid with 4 cm of gold

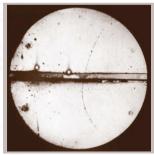
Arthur Compton (1932): corpuscular nature of the radiation

Bruno Rossi (1932, 1933): cosmic rays traverse one meter of lead, cosmic radiation is mostly positive

Carl Anderson (1932): discovery of positron (Nobel Prize (1936) together with Hess)

Carl Anderson, Seth Neddermeyer (1936): discovery of 'meson' (mass between electron and proton) ightarrow muon

Marcel Schein (1940): cosmic rays should be mostly protons


George Rochester and Clifford Butler (1947): discovery of neutral K meson

Cecil Powell (1947): discovery of pion (Nobel Prize 1950)

Discovery of Λ hyperon (1947)

Cecil Powell (1948): discovery of positive K meson

Cosmic rays contain not only protons but also heavier nuclei (1947)

Discovery of extensive air showers

Pierre Victor Auger (1938)

cascades of particles produced by cosmic rays in the atmosphere

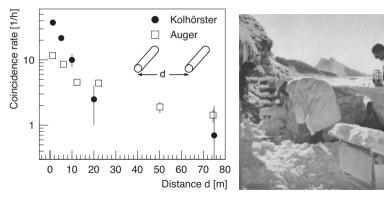
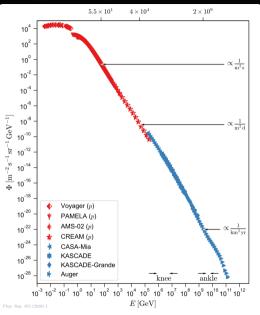
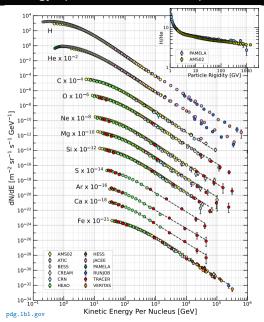



FIGURE 7. *Left*: Coincidence rate as a function of the distance between two Geiger-Müller counters as obtained by W. Kolhörster [23] and P. Auger [24]. *Right*: P. Auger measuring air showers at the Jungfraujoch in Switzerland [25].

Cosmic rays below 100 TeV

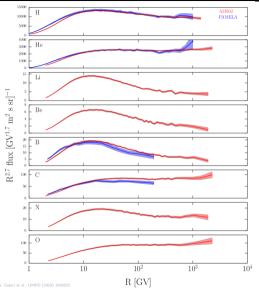
direct measurements


Energy spectrum of nuclear species: direct measurements



Cosmic rays \equiv charged particles mostly atomic nuclei $\approx 90\%$ H, 9% He, 1% 'metals' (Z > 2), with small amount of electrons, positrons, antiprotons

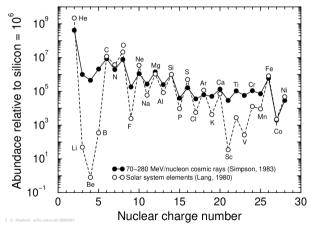
Energy spectrum of nuclear species: direct measurements



Cosmic rays \equiv charged particles mostly atomic nuclei $\approx 90\%$ H, 9% He, 1% 'metals' (Z > 2), with small amount of electrons, positrons, antiprotons

Energy spectra: featureless power laws for $E \gtrsim \text{few} \times 10 \text{ GeV}?..$

Energy spectrum of nuclear species: direct measurements



Energy spectra: featureless power laws for $E \gtrsim {
m few} imes 10$ GeV?..

Roughly $\propto R^{2.7}$ for rigidity $R \gtrsim 10$ GV, but \diamond evidently spectra of LiBeB are remarkably softer \diamond much more is happening here!

rigidity R = pc/(Ze)

Elemental abundances in solar system and cosmic rays

Solar system: CNO/LiBeB $\approx 10^6$

Cosmic rays (CR): CNO/LiBeB ~ 10

Spallogenic nucleosynthesis

direct channel

CR + ISM nucleus $\rightarrow LiBeB + X$

reverse channel

 $\mathsf{CR}\ \mathsf{CNO} + \mathsf{ISM}\ \mathsf{nucleus} \to \mathsf{LiBeB} + X$

$$\alpha + \alpha \rightarrow \text{LiBe} + X$$

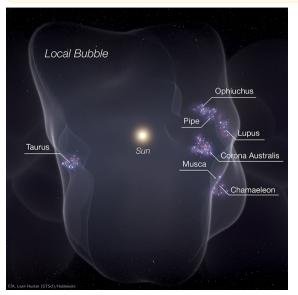
hydrogen abundance is about $10\times {\rm helium}$

Role of low energy CR and open questions

Dynamics of Interstellar Molecular Clouds (IMC)

- IMCs are star formation regions
- dynamics and evolution of IMC/protoplanetary disks depends on gas ionization (magnetic pressure support against gravity, turbulence)
- $\label{eq:massive} \begin{array}{l} \circ \mbox{ IMCs are cold & diluted, but with a complex chemistry} \\ (water, ammonia, ethyl alcohol, sugar and amino acids) \\ catalyst: protonated hydrogen H_3^+ from the H_2 ionization \end{array}$

IMC temperatures are only from 10 K to 30 K what keeps them slightly (10^{-7}) ionized?


Low energy CR is the only agent able to penetrate to the densest ICM parts and influence their dynamics

A few immediate questions

- \diamond what are the sources of low-energy cosmic rays?
- \diamond are sub-GeV and higher energy particles produced by the same sources?
- \diamond is the low-energy CR flux same over the entire Milky Way?

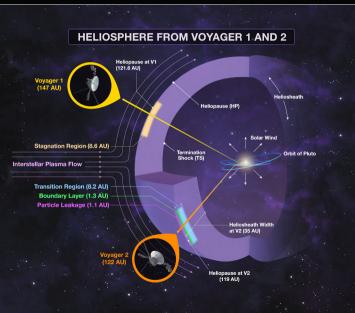
The Local Bubble

The low-energy CR flux measured by us can be a local feature

The Local Bubble "a cavity of low-density, high-temperature plasma surrounded by a shell of cold, neutral gas and dust"

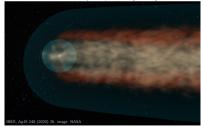
- around 1000 light years wide
- started around 14 Myr ago
- o the Sun entered into the Bubble around 5 Myr ago
- o around 15 supernovae explosions sweeping gas to the shell
- o surface is reach in star formation regions
- o low-energy CR fluxes can be different in local bubbles

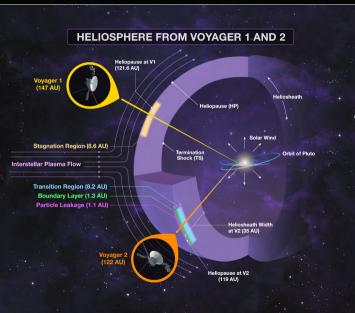
Interstellar CR spectra



Leaving heliosphere Voyager 1 in 2012 Voyager 2 in 2018

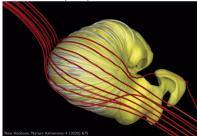
Astrospheres

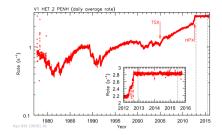

Interstellar CR spectra


Leaving heliosphere Voyager 1 in 2012 Voyager 2 in 2018

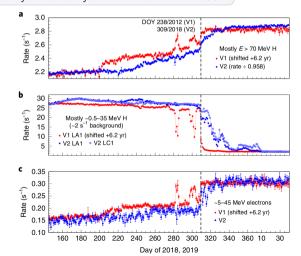
Heliosphere

Interstellar Boundary Explorer (2020)


Interstellar CR spectra

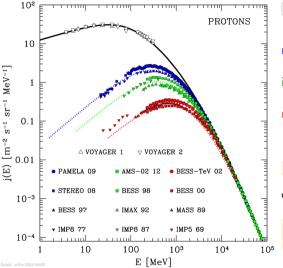

Leaving heliosphere Voyager 1 in 2012 Voyager 2 in 2018

Heliosphere


New Horizons (2020)

Interstellar CR fluxes

Voyager 1 counting rate (mainly protons > 70 MeV) Heliopause crossing is marked with HPX 11-year solar cycle is clearly seen in data before 1995


Voyager 1 & 2 counting rates near HPX

b. Anomalous CRs (mostly solar system H)

Voyager 1: two jumps before HPX due to interstellar flux invasions

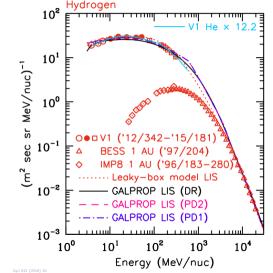
Fluxes are stable after HPX

Solar modulation of CR spectra

Near-Earth (1 au) data for different solar activity periods

minimum

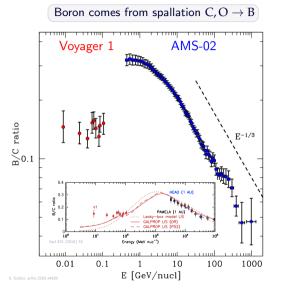
intermediate


maximum

Solar wind affects fluxes of $R \lesssim 10$ GV particles

demodulation of fluxes is complicated and uncertain

Voyager data provide possibility to determine the modulation potential


Proton to helium ratio from Voyager 1

p/He is nearly constant ≈ 12.2

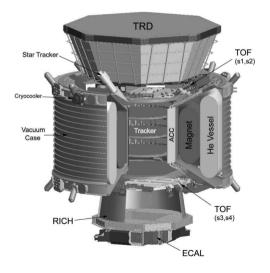
would not be the case for rigidity-dependent solar modulation for unclear reasons above tens of GeV. H spectrum is slightly softer than He spectrum

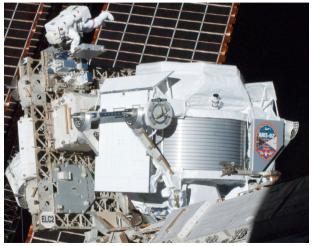
CR residence time in the Milky Way

B/C depends on

confinement time of B in Galaxy (energy-dependent)
 spallation time of B to lighter elements

Voyager data is difficult to interpret (see inset plot)

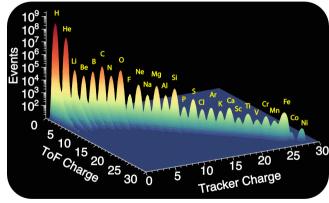

from AMS-02 data (at 10 GeV/nucleon energy) \diamond residence time in ISM 4 Myr (grammage of 7 $g\,cm^{-2})$


 ${}^{10}{
m Be}/{}^9{
m Be}~(<1~{
m Gev/nucleon})$ measurements $\diamond~{
m CRs}$ escape time $\approx 100~{
m Myr}$

18

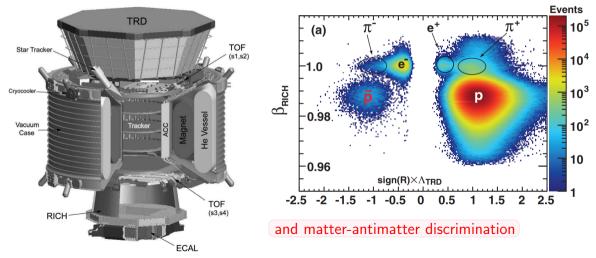
Direct CR measurements at 1 au (centered on AMS-02 and DAMPE)

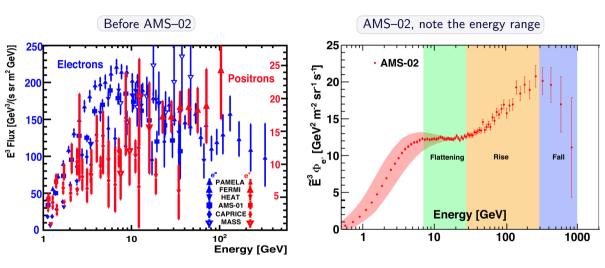

Alpha Magnetic Spectrometer on the International Space Station



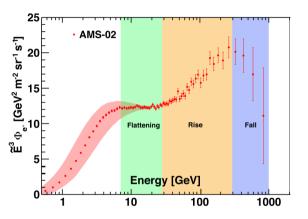
Direct CR measurements at 1 au (centered on AMS-02 and DAMPE)

Alpha Magnetic Spectrometer on the International Space Station




excellent energy and charge resolution...

Direct CR measurements at 1 au (centered on AMS-02 and DAMPE)


Alpha Magnetic Spectrometer on the International Space Station

AMS-02 positron spectrum

AMS-02 positron spectrum

 Positron production mechanisms

 diffuse

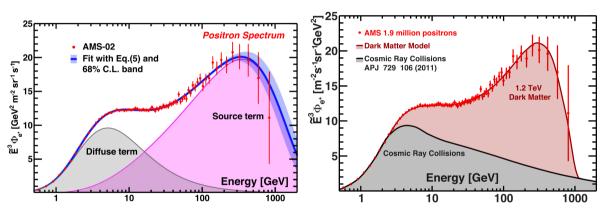
 ◇ CR interactions with ISM

 'source'

 ◇ acceleration in astrophysical objects

 ◇ dark matter annihilation (?)

Spectral features

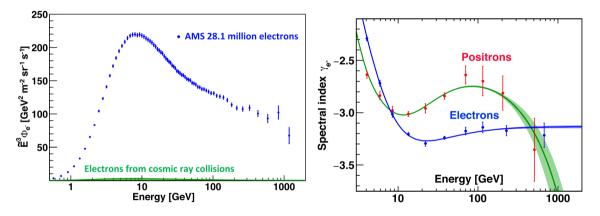

hardening at $25.2\pm1.8~{
m GeV}$

drop-off at 284^{+91}_{-64} GeV

energy cutoff of 'source' contribution $810^{+310}_{-180}~{\rm GeV}$ (with a significance $>4\sigma$)

Contributions to AMS-02 positron spectrum

Diffuse and 'source' contributions

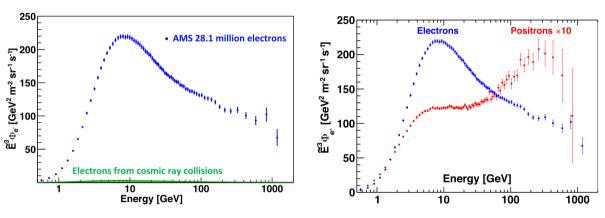

positron flux is found to be consistent with isotropy (expected in case of the dark matter origin)

o more statistics at higher energies needed to test the dark matter hypothesis

 \diamond no consistent description of positron, antiproton, Be/C, B/C, Be/O, B/O et al. data exists yet

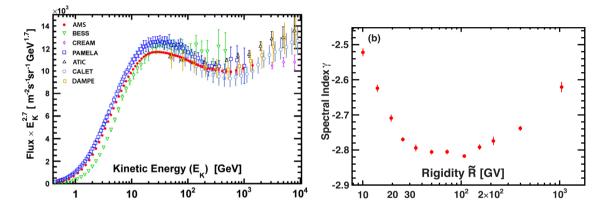
AMS-02 electron spectrum

Diffuse contribution is minor

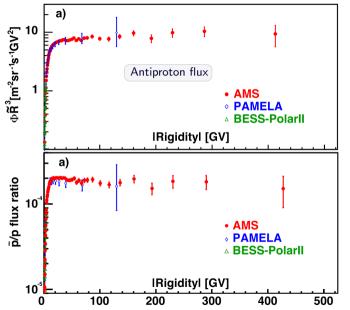


 \diamond electron spectrum is described well with two power laws

- \diamond cutoff for $E < 1.9~{\rm TeV}$ is excluded at the 5σ
- \diamond high-energy electrons and positrons come from different sources

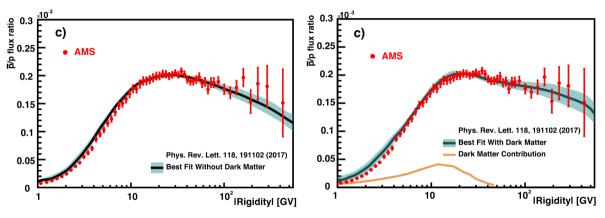

AMS-02 electron spectrum

Diffuse contribution is minor


 \diamond electron spectrum is described well with two power laws

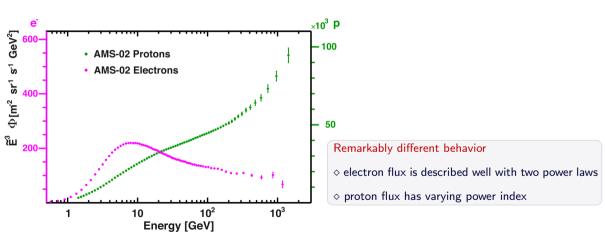
- \diamond cutoff for $E < 1.9~{\rm TeV}$ is excluded at the 5σ
- \diamond high-energy electrons and positrons come from different sources

 \diamond not a single power law for R > 45 GV (where solar modulation is negligible) \diamond spectrum is becoming progressively harder for R > 200 GV \diamond other changes above 10 TeV?

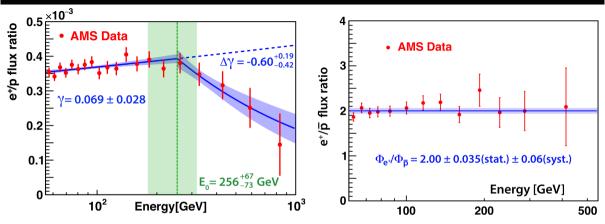

Antiprotons

p and \bar{p} fluxes have similar shapes

not expected if antiprotons come only from CR interactions with ISM

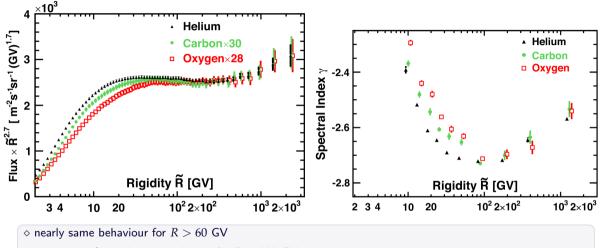

Dark matter contribution to antiproton flux?

 \diamond qualitative description can be achieved with/without dark matter contribution \diamond cutoff at high energies is expected in case of the dark matter origin \diamond successful astrophysical model should describe data on p, p, e[±], nuclei

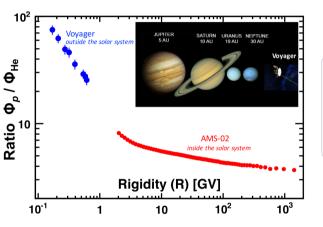

Protons vs electrons

Electrons and protons are mostly primary cosmic rays

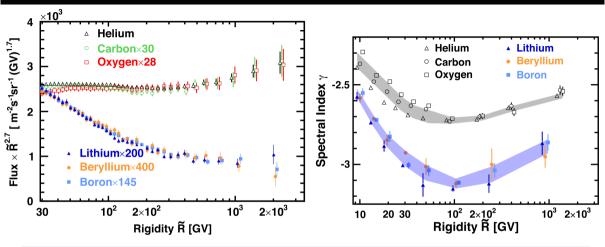
softer electron spectrum is expected due to larger energy losses in ISM


Protons, antiprotons, electrons, positrons

 \diamond p and \bar{p} : similar shapes (E < 400 GeV) — not expected if \bar{p} are only secondary


- \diamond electron spectrum for $E>10~{\rm GeV}$ is softer than proton spectrum propagation effect
- \diamond positron spectrum is harder than proton spectrum for $60-260~{\rm GeV}$
- \diamond positron to antiproton ratio is compatible to const for 60-400 GeV common source?

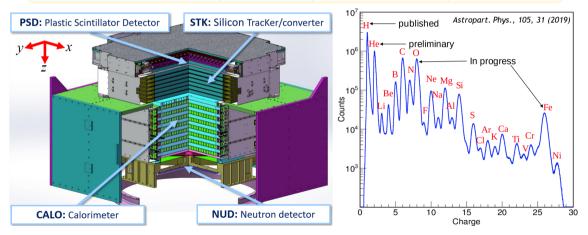
Spectra of helium, carbon, oxygen


 \diamond unexpected/unexplained hardening for $R>200~{\rm GV}$

Proton to helium ratio

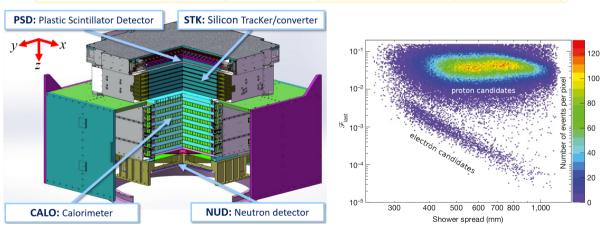
◇ above 3.5 GV, p/He is decreasing as A + C(R/3.5 GV)^Δ; Δ = -0.3
◇ becoming constant ≈ 3.15 at highest rigidities
◇ are protons composed from soft and hard components?

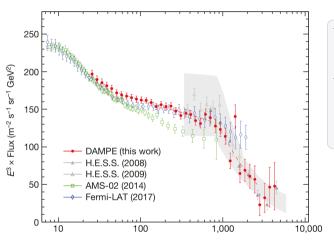
Secondary nuclei


 \diamond similar rigidity dependence of LiBeB fluxes for R > 30 GV

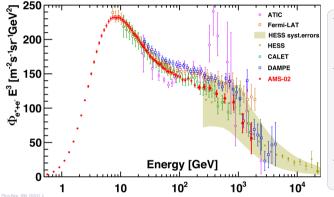
 \diamond strangely, spectral hardening of LiBeB is by $\Delta\gamma\approx 0.14$ larger than of HeCO

more results (other nuclei, isotopes etc.): Physics Reports 894 (2021) 1-116


DArk Matter Particle Explorer aka Wukong at 500 km orbit

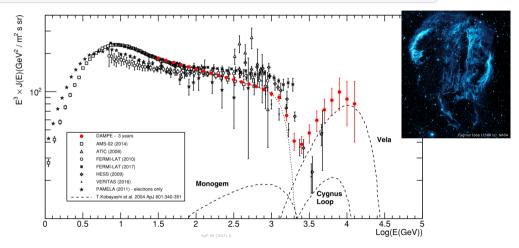

Energy ranges: γ -rays/electrons (5 GeV – 10 TeV), protons/heavy nuclei (50 GeV – 100 TeV)

DArk Matter Particle Explorer aka Wukong at 500 km orbit

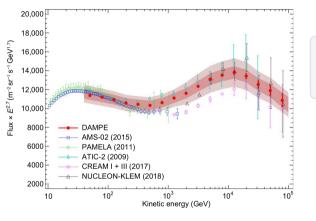

Energy ranges: γ -rays/electrons (5 GeV – 10 TeV), protons/heavy nuclei (50 GeV – 100 TeV)

 \diamond 55 GeV to 2.63 TeV: good fit with a smoothly broken power law

 break at 0.9 TeV (observed by H.E.S.S., but not by Fermi-LAT): γ changes from 3.1 to 3.9.
 Energy cutoff in pulsars/SNRs?
 Linked to dark matter properties?

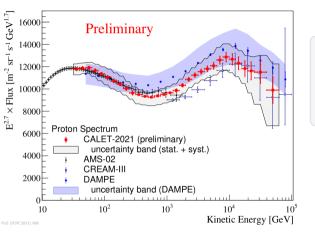

 \diamond 55 GeV to 2.63 TeV: good fit with a smoothly broken power law

 break at 0.9 TeV (observed by H.E.S.S., but not by Fermi-LAT): γ changes from 3.1 to 3.9.
 Energy cutoff in pulsars/SNRs?
 Linked to dark matter properties?
 (AMS-02, CALET, HESS) and DAMPE


do not agree well (energy scale systematics?)

Electron + positron spectrum

Proton spectrum


 \diamond spectral hardening at a few hundred GeV

 \diamond strong evidence of a softening at ≈ 13.6 TeV, γ changes from 2.60 to 2.85

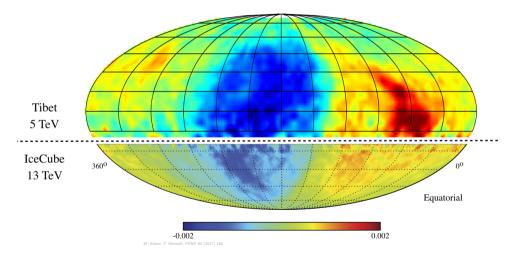
Possible reasons of 10 TeV softening

- energy cutoff for a particular CR population
- local source
- presence of various types of sources

Proton spectrum

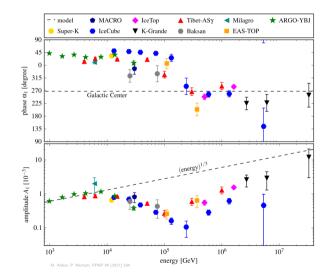
 \diamond spectral hardening at a few hundred GeV

 \diamond strong evidence of a softening at ≈ 13.6 TeV, γ changes from 2.60 to 2.85

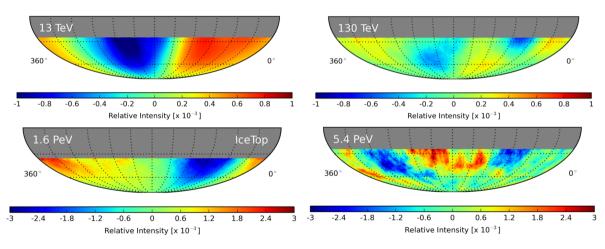

 \diamond observed as well by CALET and CREAM-III

Possible reasons of 10 TeV softening

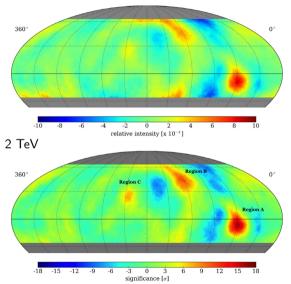
- energy cutoff for a particular CR population
- local source
- presence of various types of sources


Anisotropies in arrival directions (air-shower observatories)

 \diamond Isotropic diffusion & SNR-(pulsar-)like source distribution: dipole aligned with the Galactic center (R.A. 266°) \diamond Anisotropic diffusion: dipole aligned with the magnetic field direction


Anisotropies in arrival directions (air-shower observatories)

Phase flips towards the Galactic center above 100 TeV, amplitude starts growing


Anisotropies measured by IceCube/IceTop

Visualisation of the amplitude and phase change with energy

Small scale anisotropies from HAWC

Relative intensities after subtracting dipole, quadrupole and octupole terms

Regions A, B

observed as well by Milagro, Tibet AD γ , ARGO-YBG

Region C

observed as well by ARGO-YBG

M. Ahlers, P. Mertsch, PPNP 94 (2017) 184 Local effects in heliosphere Non-diffusive propagation Non-uniform pitch-angle diffusion Turbulent magnetic fields Exotics (strangelets, dark matter)

New observational puzzles

- + Hardening of nuclei spectra at $R\sim 300~{\rm GV}$
- + Difference in slopes of proton and helium spectra
- + Nearly same slopes of protons, antiprotons and positrons at $E>10~{\rm GeV}$
- + Break at $\sim 1~{\rm TeV}$ in the electron spectrum
- + Rise of positron fraction at $E>10~{\rm GeV}$
- + Small scale anisotropies
- + Isotropic CR flux up to very high energies
- + Anisotropy phase pointing away from Galactic center at E < 100 TeV

for more details see S. Gabici et al., IJMPD (2019) 1930022