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Artificial Intelligence in Media

Ehe New Dork Times Magazine

g Svanffurter Allgemeine

Kiinstliche Intelligenz

The Great AL Awakening

How Google used artificial intelligence to transform Google Translate, one of its more popular
services — and how machine learning is poised to reinvent computing itself.

KUNSTLICHE INTELLIGENZ

Schlau in zwei Stunden

VON ALEXANDER ARMBRUSTER
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Al IS HIGHLY LIKELY TO DESTROY

HUMANS, ELON MUSK WARNS
i W

Artificial Intelligence - “The effort to automate intellectual tasks normally performed by humans”

Deep learning for physics
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Deep Learning

Automating previously

ImageNet Error Rate

 Large progress of artificial
intelligence due to Deep Learning

2010

nervana

Present

Example: Caption Generation
Figure 3..E mple:

A dog is standing on a hardwood floor.

A woman is throwing a frisbee in a park.

Deep learning for physics
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A stop sign is on a road with a
mountain in the background.

\\>~, ‘E//A\LUJ

“*human” tasks

Speech Error Rate

2000 Present

f attending to the correct object (white indicates the attended regions, underlines indicated the corresponding word)

ArXiv: 1502:03044
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Hands On: Neural Networks f\}v \,,E//A,;\\U

Thursday

Machine learning basics
e fully-connected networks

* interactive neural network training Set up & Requirements: - https://bit.ly/3pyXRii
 convolutional neural networks we will use Jupyter Notebooks and Keras / TensorFlow
we will use Google Colab — Google Account required

ML frameworks and the design of simple neural networks

* machine learning framework: Keras / TensorFlow
* implementation of fully-connected networks and convolutional neural networks

Advances in deep learning Friday

* unsupervised learning
 applications in physics research

Deep learning for physics
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Should you ask a Question
during Seminar?

I | I

W Are you

| - Do you actually HAVE No YU | ves
\1 {E’ﬁﬁ%ﬂ. a question? oA

os oo

.............................

| [ :

Are you sure it's not a dumb e

question or that the speaker Hayw
already answered it? v

|
N W .
A Y rhe
nk so... s E
L 1l

&

Do you really need to ask the Proceed with
question in public or could you caution.
follow up with him/her later?
- -
Doesn’t
I'his i1s a PhD school lecture -
- Are you the Seminar organizer Thank God,
l asking a question because no one | ves Please ask the
- Please ask questions SRS 2R
u making everyone uncomfortable? get out of here!
No
Ok, you have a legitimate
question. Do you actually -
care about the answer? | | Mot really, |
i Just want fo
i “show off.

Yes! | ,.._

E CHAM 2013

Y v
FINE, ASK YOUR QUESTION. |
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A woman is throwing a frisbee in a park. A dog is standing on a hardwoed floor.

A stop sign is on a road with a

Deep Learning S

KUNSTLICHE INTELLIGENZ

Schlau in zwei Stunden

VON ALEXANDER ARMBRUSTER - AKTUALISIERT AM 27.09.2017 - 11:41

* Machine Learning Basics

* Neural Networks
+ Backpropagation, Optimization
+ Activation, Initialization
* Preprocessing

Artificial Intelligence - “The effort to automate intellectual tasks normally performed by humans”

Deep learning for physics
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Deep Learning ‘,}E‘, e \,,E//A,;\\U

* Every minute: @
+ Instagram users post 200,000 photos ¥
+ Twitter users send 350,000 tweets AE.NE&WHCS
- Data on billion scale every day ““ﬂ[ﬂﬂgnfg A

Ewitkker

PARMLLEL ==
“' amazon

DIFEULTY

GeForce 780 T

Hype or Reality?

GeForce GTX TITAN \'f"..
EXHIBIT 1: Al CAPITAL CONTINUES TO CLIMB Academic Publications about Deep Leaming

Total funding for artificial intelliger tartups from ventu
Deep Learning
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.| E o/ il
202 2013 2014 2015 2016 4 ——ir
. o—e Source: ¢ —.—
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When is it Deep? PO \,,E//A,;\\U

rule based system

hand designed

program learned by

machine

G

’

classic machine learning

hand designed
features

;

’

deep learning

representation
learning

“It's deep if it has more than one stage of non-linear feature transformation” - Y. LeCun

Deep learning for physics
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Machine Learning — Regression é}:%;asz;ﬁs:m \,,E//A,;\\U
* Data: {%i, ¥}, 1 =1,..,N

\ * Define model:
o ym(x,0) = Wz + b with free parameters 6 = (W, b)
y e < * Define objective function (loss/cost)
° pg ’ 1 N
s’ data J(0) = N Z[ym(%,@) - yz‘]Q
° ¢ =1

P - Train model (minimize objective) 6 = argmin[J(0)]
X - Optimize set of free parameters 6 = (W, b)
eg. use gradient descent

Deep learning for physics
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Multidimensional Linear Models ‘\\> B, \,,E//A,;\\U

-y
* Predict multiple outputs y = (1, ---, ¥») from multiple inputs x = (z1, ..., Zy)
using linear function y = Wx +b

Note: We define linear = affine in this course
« Example: z € R?, y € R?

Wi Wig VV13)>< i; _|_(b1>:<y1>
War Way Was - b2 Y2

Deep learning for physics
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Non-Linear Network Models LET ) R,
Wx + b only describes linear models
* Use network with several linear layers:
=Wz 4 pb)
y=WAR +p®
* Model is still linear!
y=w® (Wu)x n b<1>) e
y=WAWD 4 4 WwRpm 4 p)

Ve

%% b

- Solution: Apply non-linear activation o to
each element — h =o(h') = c(Wx + b)

Deep learning for physics
Glombitza | ECAP | 09/01/22



http://www.jonas-glombitza.com/

Activation Functions ‘f:% e \,,E//A,;\\U

* Using an activation function the layer becomes a non linear mapping

- Allows for stacking several layers adaptive parameters
y =oc(Wx+b)
AT
Examples output activation input

* Rectified Linear Unit

RelLU “sigmoid
o(r) = max(0, ) . g z ; ;
. ] o) 145 s sam e B
* Sigmoid 4+ f
o(x) = ! M 04— i -
l14e* o
* Hyperbolic tangent ©_{]| . . R I S b |
€+2x - ]. 1 | [ I I | I I |
o(x) = p— 1 0 1 1 0 1 1 0 1
Wx+b Wx+Db Wx+b

Deep learning for physics
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Neural Networks ‘,}% =\

Basic unit o(Wx + b) is called nodelneuron (analogy to neuroscience)
* Strength of connections between neurons is specified by weight matrix W
* Width: number of neurons per layer
* Depth: number of layers holding weights (do not count input layer)

hidden layer hidden layer

n
0
Q W@, pa w Wo, @ \rlzj— W@, b®

n, inputs n, neurons n, neurons n, outputs

» Deep Learning

Deep learning for physics go deep
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Initialization ‘,}:% e \,,E//A,;\\U

* Weights need different (random) initial values -. symmetry breaking
» Scale of weights very important
+ Too large — ' ' '
ge expllodllng S|.gnals & gradl_ents } No learning!
+ Too small — vanishing signals & gradients

* For forward pass in each layer: * For Backward pass in each layer:
Var|lx] =1 Var|lAxz;) =1
- Depends from activation function and number of in and outgoing nodes
2
Var|W] = ~ For tanh VarW] = ~ For ReLU
Nin —l_ Nout  Glorot, Bengio Tin Heetal

* Can be sampled from Gaussian or uniform distribution (Var. scaled by factor of 3)

Deep learning for physics
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Gradient Descent

‘\\ﬁ ‘HE //AF\\\U

« Minimize obijective function J(6) by updating 6 in opposite direction of gradient

iteratively

gradient: d.J/dO
stepsize: Q

dJ

00— o—

do

* Example: linear regression with mean squared error

A

e
y 5> > Wi
X

»

Deep learning for physics
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Example Training f\?v AR, ,,E//A,;\\UJ

o Epoch Learning rate Activation Regularization Regularization rate Problem type
bl
000,000 0.03 - Tanh - None - 0 - Classification -

DATA FEATURES + — 3 HIDDEN LAYERS OUTPUT

Which dataset do Which properties do Test loss 0.539

you want to use? you want to feed in? h @ Y= ) Training loss 0.514
) 4 neurons 4 neurons 4 neurons

O O
Ratio of training to . '_',‘:_:‘: ... .
test data: 50% . ‘.'f'g.*:x b | o
D D 5 't.o ,.; ":; :.‘
. . ®
MNoise: 0 feve e
. [} [}

Batch size: 10

—

REGENERATE

Colors shows -|
data, neuronand ' 1

weight values.

[] showtestdata [] Discretize output

Deep learning for physics
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7]

=AU

Backpropagation oo s,
WX +b)

W %E)
-«

* Network is series of simple operations (linear mappings/activations/loss ...)
* For each operation simple calculations for:
+ Its local output (forward pass)
+ Its derivative (backward pass)
* Use chain rule to evaluate gradient for each parameter
- Fast evaluation of the gradient - Backpropagation

y

Deep learning for physics
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Gradient Decent: Learning Rate ‘\\> g, \,,E//A,;\\U

-y
* Learning rate « determines speed of training d.J
» High rate 0—0—a—

+ poor convergence behavior or none at all / do
* Small rate Learning rate

+ Very slow training or none at all
- Typical learning ratecv = 103

Advanced
* Reduce learning rate when loss stops decreasing
-~ Increase sensitivity to smaller scales

& too small & too large

Deep learning for physics
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Advanced Optimizer capl "= ‘

=AU

 Faster convergence by damping oscillations and increasing the step size for
more informative gradients

Momentum: Use past gradients (velocity)

Adaptive learning rate: Scaling using past gradients (Adagrad, Adam, Adadelta...)
» Use adaptive learning rates for each parameter

Convergence behavior of various optimizers

—» SGD + momentum

Y — sep
— Momentum
— NAG

. SGD

= Momentum

- NAG

— Adagrad
Adadelta

— Rmsprop
R

—— Adagrad
Adadelta

=15

Sebastian Ruder: http://ruder.io/optimizing-gradient-descent/
Deep learning for physics
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http://www.jonas-glombitza.com/

Stochastic Gradient Descent - SGD é}:%;aﬁ;ﬁsm \,,E//A,;\\U
V4

7
/ /)
/ //

Why Momentum
Really Works, Distill

* Use small subset (mini batch) of dataset for calculating the gradient
+ 1 epoch = full pass through training data set
+ Reduces computational effort
* More updates per epoch - speeds up convergence
+ Stochastic behavior — improve generalization performance
* Batch size is hyperparameter and mostly in order of ~32

“Friends don't let friends use minibatches larger than 32” - Y. LeCun

Deep learning for physics
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Deep Neural Networks é}:%;ass;ﬁw:% \,,E//A,;\\U

Feature Hierarchy: each new layer extract more abstract information of the data.
Probabilistic Mapping: learns to combine the extracted features

Train model (to find 8 = {W;, b; } that minimizes objective) is automatic process.

hidden layer hidden layer
input layer output layer adaptive parameters
y = o0(Wx + b)
AR,
output activation input
(1) b‘” W®_ h@ e we,
. . 2
L objective : J(0) = Z Ym (24, 0) — vl
)
L dJ dJ
iterative updato optimization : 0 — 0 60— 60— a—s

Deep learning for physics
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Machine Learning Tasks ‘& . \,,E//A,;\\U

-y
A Regression A Classification
e
Y L2
) )
X 1

* Regression: Predict continuous label ¥
* Classification: Separate into different classes (cats, dogs, airplanes, ...)
* Can sometimes convert to the other

Deep learning for physics
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Classification vs. Regression

Linear

A Y

no activation function

> 2

Minimize mean-squared-error

70) = - 3l — ()P

7

Deep learning for physics
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y;i(2) = -
. @~
. » > ZZ

Minimize cross entropy

Jwy:—%E:wmg%mmn
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TensorFlow Playground - 10 Minutes ‘& g \,,E//A,;\\LUJ

-y

Checkerboard task
* Choose the Checkerboard data set (XOR)
* What do you observe when changing the activation function?
* What do you see when inspecting the features of deeper layers?
* Choose the ReLU activation:
+ What is the minimum number of nodes / layers needed to solve the task?

UUUUUU

55 0.488

B B o Open the example at:
& D e
o RS
o https://playground.tensorflow.org/
| -.—— | or visit https://bit.ly/3pyXRii
Deep learning for physics Bonus: - Solve the Spiral / Swiss roll task

Glombitza | ECAP | 09/01/22
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—— Model —— Model
— Truth — Truth
Data Data

Generalization

|. Training, Validation, Testing
Il.Under- and Overfitting
lll.Regularization



Universal Approximation Theorem ‘f\h B \,,E//A,;\\U

“A feed-forward network with a linear output and at least one hidden layer with a
finite number of nodes can (in theory) approximate any reasonable function to

arbitrary precision.”

* Network design considerations — feature engineering, network architecture
- Shallow networks often show bad performance - train deep models!

* Fit complicated function
- Use neural network
- 2 hidden layers a 30 nodes

1N =
Deep learning for physics
Glombitza | ECAP | 09/01/22
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Under- and Overfitting ‘& . \,,E//A,;\\LUJ

ECapL
* Challenging to find a good network design
* Under-complex models show bad performance
* complex models are prone to overfitting
- Model memorizes training data under loss of generalization performance

—— Model —— Model —— Model
—— Truth s * —— Truth — Truth
Data Data Data

b4
Deep learning for physics
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Generalization & Validation ‘\\> e \,,E//A,;\\LUJ

-y
A complex network can learn any function, how can we monitor overfitting?

Generalization

Unknown true distribution py,.(x, %) from which data is drawn.

Trained model y,,,(z) provides prediction based on this limited set
- How good is the model when faced with new data?

Validation

Estimate generalization error on data not used during training.

Split data into:
* Training set: to train the network
* Validation set: to monitor and tune the training (training of hyperparameter)
* Test set: to estimate final performance. Use only once!

Deep learning for physics
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Under- and Overtraining f\}V e \,,E//A,;\\LUJ

 During training monitor the loss separately for training and validation set

A Typical observation

generalization error overtraining

training steps

Loss

training set
>

Validation loss:
* is higher than training loss - generalization gap
* has a minimum - overtraining

Training loss:
e decreases

Deep learning for physics
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Parameter Norm Penalties f\}V e,

=AU

small decay

min J(0)

L2 norm: (weight decay) \||0||3 = \(0F + 05 + ...) w, A
 Contribution to loss dominated by largest weights
* Decay of weights which not contribute much to the

AlIO112

reduction of the objective J(0) v
large decay
L! norm: (lasso) A||0]]1 = A(|01] + |62] + ...) s A
* Constant shrinking of parameters IR
* Allows for sparse network (feature selection mechanism)
»
Wy

ElasticNet: Combination of L and L? norm

Deep learning for physics
Glombitza | ECAP | 09/01/22
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D ro p o ut é_\:% FOR ASTROrANTcLE ‘DE /A/;\U

Randomly turn of fraction Pdrop 0Of neurons in each training step

Typical fraction
0.2 < pdrop < 0.5

* Adds noise to process of feature extraction
* Force network to train redundant representations
* During validation and test: no dropout applied — large ensemble of “submodels”

Deep learning for physics
Glombitza | ECAP | 09/01/22
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9=

Overtraining f}; B ,,E//A,;\\UJ

O Epoch Learning rate Activation Regularization Regularization rate Problem type
4
008,373 0.03 . RelU - None - 0

Classification -

DATA FEATURES + — 5 HIDDEN LAYERS OUTPUT
Which dataset do Which properties do Test loss 0.279
you want o use? you want to feed in? Y — £ g oy = 1Y = i & Training loss 0.074

4 neurons 5 neurons 5 neurons 5 neurons 5 neurons

Ratio of training to
test data: 40%
_.

Noise: 35

—e

Batch size: 10

—e

sin(X1)

REGENERATE

Colors shows
g | —

data, neuron and
weight values.

[ Show testdata  [] Discretize output

Deep learning for physics
Glombitza | ECAP | 09/01/22
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Clarifying frequent misunderstandings é}:%;aﬁ;ﬁsm \,,E//A,;\\U

* Use of activation functions - layer without activation is usually meaningless
+ sigmoid only @ last layer in classification / regression @ last layer no activation
* Universal approximation theorem is only a theoretic statement
+ even such models exists - you have to find its design & train it — not easy!
* Test and validation data are different
+ validation: tune your DNN, e.g. train 10 DNNs & compare, monitor overtraining
+ test: check after you decide for one of the 10 models -~ ONCE!
* Training networks is not random -, extract features out of patterns in data
+ retraining gives slightly different DNN - its feature sensitive to same patterns!
* DNNs are not the holy grail - simple fits can outperform DNNs
* lots of data needed, challenge has to be complex and multi-dimensional

Deep learning for physics
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Convolutional Neural Networks

HIRE THE SMARTEST PEOPLE IN THE WORLD
|. Processing image-like data ! £
ll.Incorporating symmetries into DNNs '

-
o
"

£,
_ INVENT CAT DETECTOR



Natural Images

Automate task for humans, very challenging for machine learning models:
* High dimensional input (up to millions of pixels)
* Many possible classes depending on task
* Multiple variations

* Viewing angle, light conditions, deformation, object variations, occlusions....

Deep learning for physics
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Computer Vision Tasks ‘\\> . \,,E//A,;\\U

“J
[ BE
bottle, cup, cube
‘ bottle
. - ._ wp
| g ¥ cube| cube
(a) Image classification (b) Object localization
bottle
(c) Semantic segmentation (d) Instance segmentation

Deep learning for physics
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http://www.jonas-glombitza.com/

Fully Connected Network

* Input layer: Flatten image to 32 x 32 x 3 = 3072 vector
* Fully connected: every pixel connected with each other
x Huge number of adaptive parameters per layer

x No use of translational variance

x No prior on local correlations

N

ERLANGEN CENTRE
v e 1] For astRopaRTIGLE
PHYSICS

-y

Deep learning for physics
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2D Convolutional Neural Networks f\:, e \,,E//A,;\\U

input

- el
output
filter

32
height

\)
C
~ . ‘»'/
T . L2
X
v‘ B -
32 o
width [ Paul-Louis Prove,

Towards Data Science

3 depth

* Consider input volume (width x height x depth), e.g., 3 color channels
* Use convolutional filter with smaller width and height but same depth

» Slide filter over the entire volume and calculate linear transformation to get one
output value for each position

Deep learning for physics
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Convolutional Operation {% \,,E//A,;\\U

3-—1+0-2+1-0+4-0+2-3
+0-04+2-04+4-24+-3--5=206

Deep learning for physics
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http://www.jonas-glombitza.com/

Convolutional filters ‘\\\ A, \,,E//A,;\\LUJ

-y
hand-designed filters i
S18 deep learning
- N\ ~ N
Edge -1/-1 -1 Diag:;;el -1 -1 2 Convl\?:;;i’z?lisl W, W, w, adaptive
-118 -1 -1 2 -1 W W lWel  parameters
11 -1 2 -1 -1 W, W, W,

 scan input image for the presence of specific feature using filters
 use multiple filters and stack the results as feature maps (depth-wise stacking)

input filter

32
height

2 7

Deep learning for physics depth feature maps

Glombitza | ECAP | 09/01/22
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Spatial Output Size Q

Standard convolution reduces the output size due to extent of the filter
- Sets upper bound to the number of convolutional layers

* Example: Convolution with 3 x 3 filter

7

Glombitza | ECAP | 09/01/22
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P add | ng :\E;} EASCLIBTE, ‘HE /AH\U

Add zeros around image borders to conserve the spatial extent of the input
- Prevents fast shrinking of the network input

* Example: Convolution with 3 x 3 filter and padding

Paul-Louis Prove,
Towards Data Science

Deep learning for physics
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42



http://www.jonas-glombitza.com/

Striding f\b B ‘HE//A/:\\\U

Using a larger stride when sliding over the input, reduces the output size
- Useful for switching to smaller image sizes / larger scales

* Example: Convolution with 3 x 3 filter and stride of 2

3.
3

Paul-Louis Prove,
7 Towards Data Science

43 Deep learning for physics
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Pooli ng EC L e
Sub-sample the input to reduce the output size

- Used to merge semantically similar features

- Make network invariant to small translations or perturbations
Average pooling: Take the mean of each patch - for some regressions preferable
Max pooling: Take the maximum of each patch

— In practice often better performance, applies stronger constraint

=AU

max pooling

d

* Typical Pooling:
Pooling using 2 x 2 patches
and a stride of 2

average pooling

* Overlapping Pooling:
3 x 3 patches with stride of 2

Deep learning for physics
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2D Convolutional Operation BN e \,,E//A,;\\U

-y

Stack multiple convolutional layers + activations
* Each convolution acts on feature map of previous layer receptive field

: : v _—
* Increasing feature hierarchy ° 77
* Increasing of receptive field "023 o
a
)
&)
o
Conv. Conv. 8
+ RelLU + ReLU 3
S5x5x3x8 S5x5x8x16 <
3 depth 8 depth 16 -

depth

Deep learning for physics
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Convolutional Pyramid ‘}:% e \,,E//A,;\\U

ConvNet architectures usually have a pyramidal shape. For deeper layers:
* Increasing of feature space
* Decreasing of spatial extent

vl

Conv. Conv.

- Spatial information is converted to representational features with increasing
hierarchy

Deep learning for physics
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Convolutional Operation }\}V -

NTRE
RTICLE

* Fully connected layers are special case of convolutional layers
Input - 7 Output - 5

10 i - EE

weight matrix

X - HEEEN

* Parameters greatly reduced due to sparsity and weight sharing
- Strong prior on local correlation and translational invariance

Deep learning for physics

8l Glombitza | ECAP | 09/01/22

=AU


http://www.jonas-glombitza.com/

Clarifying frequent misunderstandings {;V \,,:/A,;\\U
* The filters are no pre-defined by the user - just width and depth and number
+ filters are adapted / learned by the CNN during training

* Number of filters define number of new feature maps
+ ten 3x3 filter applied to RGB image - 10 feature maps

* Filter has the depth of the input image (e.g. depth 3 for RGB images)

+ two 3x3 filter applied to RGB image - 2 feature maps, i.e. 2 channels
- number of adaptive parameters =3 x3x3*2+2 =56

» After each convolutional operation an activation is applied! (usually)

« CNN part is followed by a fully-connected part (in most cases)

— output is reshaped (flattened) to a vector — apply vanilla NN layer

Deep learning for physics
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S umm ary ‘E} AR ‘DE AU

» 2D Convolution acts on 3D input (width x height x depth)
* Slide small filter over input and make linear transformation (dot product + bias)

* Hyperparameter:
+ Size of filter, typically (1 x 1), (3x3), (5x5)or (7 x7)
* Number of filters (feature maps)
+ Padding (maintain spatial extent) o

Center element of the kernel is placed over the (00}
source pixel. The source pixel is then replaced

+ Striding or pooling (reduce spatial extent) with 3 weighted sum o el and ety piet. (0 <1
* Reduction of parameters using symmetry in data:

+ Prior on local correlations (use small filters)

+ Translational invariance (weight sharing)

(emboss)

Mew pixel value (destination pixel)

Deep learning for physics
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Low-Level| |Mid-Level| [High-Level Trainable
Feature Feature Feature Classifier

h
h
k J

Feature visualization of convolutional net trained on ImageNet from [Zeiler & Fergus 2013]
. . https://arxiv.org/abs/1311.2901
Deep learning for physics
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» Take maximum/average over complete image — usually second last layer
* Replace fully connected layers
+ Saves parameters in later layers of the models — prevent overfitting
» Can be seen as regularizer
+ Fully connected transformation matrix with diagonal shape
* Enforcing correspondences between feature maps and categories

 Allows object detection in the input space
max poollng

“The pooling operation used in convolutional neural networks is a

big mistake, and the fact that it works so well is a disaster”
average pooling

- Geoffrey Hinton

Deep learning for physics
Glombitza | ECAP | 09/01/22


http://www.jonas-glombitza.com/

DI | atl ng :}\E;.' ‘DE //AE\U

Dilation leaves holes in where the filter is applied (also called atrous convolution)
» Useful for aggressively merging spatial information in large images
* Allows for a large field of view

* Example: Convolution with 3 x 3 filter and dilation 1

. . Paul-Louis Prove,
Deep learning for physics Towards Data Science
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