

ATLAS L1Calo Phase2 Upgrade

Murrough Landon (on behalf of ATLAS/TDAQ/L1Calo) 11 March 2011

- Phase 2 Overview: LO and L1
- Possible LO/L1Calo architecture
 - Links, algorithms, hardware, R&D

- ATLAS constraints
 - Hard to access some muon chambers even in a long shutdown
 - Some front end electronics may be impossible to replace
 - May have to live with maximum latency of $3.2 \mu s$
- Low latency scenario
 - Level-1 upgrade limited to 3.2 µs
 - Not enough for level-1 track trigger
- Two stage LO/L1 scenario (preferred)
 - Level-O stage for calo/muon triggers within 3.2μ s
 - Send regions of interest to seed readout of regional track trigger
 - Ideally run at up to 500 kHz (though legacy systems may limit this)
 - Second stage level-1 trigger including calo/muon/track
 - Asynchronous, latency up to 9.6 µs or possibly much longer

Overview of Phase 2 (LO/L1 scenario)

Murrough Landon, QMUL

ACES @ CERN

L1Calo Changes for Phase 2

- Existing L1Calo system
 - Separate trigger & readout paths
 - 7k analogue trigger towers per BC
 - Analogue gain calibration per tower
 - Digital BCID filter per trigger tower
 - Digital trigger algorithms
- Phase 2 proposal
 - Digitise all calo cells every BC: 160 Tbits/s
 - Single readout+trigger path off detector
 - Single calibration & BCID filter per cell
 - Trigger sums formed off detector
 - Fine granularity trigger algorithms

ACES @ CERN

Baseline Phase 2 L1Calo Architecture

In the low latency scenario, only the L0 blocks are possible

ACES @ CERN

Murrough Landon, QMUL

Phase 2 L1Calo Components

- LOCalo:
 - Find EM, Tau, Jet objects and Et sums every BC
- LOTopo:
 - Topological processor: merge LOCalo & LOMuon results
- L1Calo:
 - Asynchronous refinement of LOCalo using full calo data
 - Likely to be driven by LO RoIs
- L1Topo:
 - Final topological processor for L1Calo, L1Muon & L1Track
- LO & L1 CTP:
 - Final trigger decisions, interface with detectors
 - Interface with topological processors to be defined

Calo ROD - LOCalo Interface

- Calo Readout Driver (ROD) functions for LOCalo:
 - Derive calibrated Et from digitised pulses
 - No issues with analogue saturation
 - Assign Et to correct bunch crossing
 - Provide quality flags from optimal filter (pile up, etc)
 - Form sums of calorimeters cells into "mini towers"
 - Definition of mini towers (or "LO primitives") to be defined
 - EM layer: both fine and coarse sums (for EM & Jet triggers)
 - Possibly run algorithms on cells within one ROD FPGA
 - Eg piO rejection using LAr EM strips
 - Transmit mini towers to LOCalo
 - Pipeline full data (for every cell) for use by L1 stage (& DAQ)

- Baseline: 10 Gb/s links => 200 bits per bunch crossing
- Hadronic layer (and coarse EM sums for jet trigger):
 - One 10 Gb/s fibre link per 0.4*0.2 (or 0.2*0.4) in eta*phi
 - Can have finer eta*phi and depth granularity than now for jets
- EM layer fine granularity for EM/Tau algorithms:
 - One 10 Gb/s fibre link per 0.1*0.1 tower
 - 200 bits: more detail on eta, phi and depth
 - Concentrate bandwidth on middle layer?
 - Contains most of the energy
 - Heavily sum the strips layer

- Sliding windows, now with finer granularity
 - Limitations will be fanout and number of inputs per FPGA
 - Expect O(50) 10 Gb/s links into Virtex 7
- Adopt L2 EM/Tau ideas
 - L2 "R core": ratio of 3*7 to 7*7 LAr middle layer cells
 - LOCalo bandwidth might require middle layer cells summed in pairs
- Investigating benefits of larger jet environment...
 - Present 0.8*0.8 eta*phi jets use 0.4*0.4 RoI maximum
 - Better to know if 0.8*0.8 area is a maximum within its environment
 - Problem: much larger fanout and more fibres per FPGA
 - Larger environment with 0.1 granularity may need separate jet system
 - Needs some simulation work...

Possible LOCalo Implementation

- "Strawman" module
 - Covers 0.4*1.6 eta*phi
 - Both EM/Tau and Jet
 - Resolve overlaps locally
 - Fully custom backplane
 - Fanout to adjacent slots
 - Passive optical fanout for adjacent crates in phi
 - Four full ATCA crates
 - ETSI 16 slot 23" crates?

- Refinement of level-0 calo possible at the level-1 stage
 - Can be seeded by level-0 regions of interest
 - Gets full granularity calorimeter data for LO events
- Long latency and asynchronous processing
 - Can consider using CPUs or graphics processors
 - Could use event based multiplexing (CMS style)
 - Variable processing time per event (similar to present L2)
 - But need to output events in the correct order
 - This is probably a detector requirement
 - It may also be required between each L1 functional block

- Level-O topological processor
 - Evolution of phase 1 topological processor: see phase 1 talk
 - Similar set of algorithms as phase 1
 - But benefitting from greater precision in eta, phi and Et
 - Scope for additional algorithms...
- Level-1 topological processor
 - Combine calo, muon and track objects found at L1
 - Track/shower matching, combined muon tracks
 - Long latency and asynchronous processing: could use CPUs?
 - Design to use either LO or L1 calo and muon inputs?

- Already designing ATCA demonstrators for phase 1
- More demonstrators being planned
 - Study PCB simulation: really understand high speed links
 - Optical fanout and patching
- Medium term: build up "slice" of full phase 2 system

- "Straw man" design emerging at least for LO, but...
 - Needs more work on the details and input from simulation
 - Need to define algorithms
 - Need to estimate latency of LOCalo+LOTopo
- Evolutionary approach
 - Use phase 1 topo processor as LOTopo prototype
- Started thinking about asynchronous L1 stage
- ATLAS L1 Technical Proposal now being written
- R&D program emerging for phase 2
 - Technical demonstrators followed by prototype "slice"
 - LAr & Tile planning phase 2 prototypes to be used in ATLAS
 - Hope to feed outputs from these into LOCalo prototypes...