A Front End chip development for triggering with Silicon Strip Pt-modules

Hervé Chanal (1-2), Didier Contardo ${ }^{(3)}$, Yannick Zoccarato ${ }^{(2-3)}$
(1) LPC Clermont Ferrand, Université Blaise Pascal , CNRS/IN2P3
(2), MICRHAU pole de Microélectronique RHone Auvergne
http://micrhau.in2p3.fr/
(3) Institut de Physique Nucléaire de Lyon (IPNL), Université de Lyon, Université Lyon 1, CNRS/IN2P3

Outline

1. Introduction

2. Cluster and Stub finding
3. Data Link
4. Simulations
5. Conclusion

Silicon Strip Pt-module for Trigger purpose

Track bending in the B -field is inversely proportional to transverse momentum Cluster Width and Offset selection in 2 sensors connected to same Front End ASICs
(Pt-module) allows to reject low Pt tracks, reducing band width for read-out of proper trigger information at the LHC clock frequency

Front End ASIC architecture

Strips of Pt-module 2 sensors

Pre-amplifier and comparator stage not included in current chip version
or stage

Cluster and Stub finding : Architecture

- Two flows up to the overlap finding
- Masking of noisy channels
- The bus size is reduced at each step by priority encoders
- Up to 6 clusters per 64 strips per sensor after CW selection
- Up to 4 clusters per 2×64 strips (2 sensors) after overlap selection
- Wake up on the internal registers to reduce the consumption
- Overlap finding can be switched off (sensor edges or dead channels)

Cluster Finding : Algorithm

- 2×64 strips $\Rightarrow 2 \times 16$ blocks of 4 strips
- Same granularity as the degraded address (5 bits $\Rightarrow 128$ blocks)
- Need for boundary block to merge clusters
- 32 LUT of 16×16 bits used to find clusters in each block (up to 2 clusters/block)
- Address of a cluster =
- Address of its block
- Arbiter when a cluster cross a boundary
- Only 1 clock cycle

Data flow

Data flow

2 FIFO of 16 words depth for stubs and readout data
\rightarrow Used to safely pass from LHC clock domain (40 MHz or 20 MHz) to output link clock domain (up to 100 MHz).

Output Frame

- Trigger Frame:

From 3 to 8 words of 4 bits, depending on the number of stubs.

- Readout Frame:

The 128 strips are split in 8 frame of 20 bits.

19	18	17	16	15	14	13	12	11	10	9	8	7			5	4	3	2	1	0
Id	word			N° Strip																
1	0	0	0	1	2	3	4	5	6	7	8	9		0	11	12	13	14	15	16
Word 1				Word 2									Word 4				Word 5			

Trigger frames can be inserted between two readout frame

Communication controller

Performs the output bus arbitration with 4 running modes as a function of the FIFO states.

Communication Mode	Priority 1	Priority 2	Special
Normal	Trigger Data	Readout Data	
Derated (Trigger FIFO full) Trigger Data Ignored	Signal « trigger off » activated		
Busy (Readout FIFO full)	Readout Data	Ignored	Signal «Busy » activated
Survival (Readout and trigger FIFO full)	Trigger Data	Readout Data	Signal « trigger off » and «busy » activated

Latency

- Study the latency of the full chip with respect to the L1 rate, the Cluster Occupancy (CO) and the output stage frequency

The trigger frame latency is bellow 10 clocks cycles for an output stage frequency above 80MHz

Even at twice the expected Cluster Occupancy, the trigger frame latency is bellow 10 clocks cycles

The trigger frame latency is not too dependent of the trigger rate

Unreported clusters

Simulation of the effect of the bus cut at the level of the priority encoder
\rightarrow No loss before 1% of mean cluster occupancy
\rightarrow Final choice of the bus size to be decided with full realistic occupancy simulation

Chip status

MICroelectronic RHone AUvergne

- First prototype developed in 130nm from IBM with VCAD Standard cells
- 42300 cells
(17300 for readout pipeline)
- Estimated power 60mW
(with 20% activity on input)
- Only 32 inputs : internal mutiplexer
- Size: $4 \mathrm{~mm}^{2}$
\rightarrow Chip received 15/02/2011
at packaging level

Conclusion and prospect

- Qualify the current chips
- Correct design according to qualification results
- Review specifications
- Coupling to overall read-out architecture \rightarrow Data format adapted to GBT
- Minimize the number of GBT
\rightarrow Define concentrator ASIC
\rightarrow Zero suppression for full readout
(as for trigger flow)
- Proceed towards 256 channels ASIC
- Including preamplifier and comparator stage
(Input compatible with Pt-module geometry)

