Upgrade of the ATLAS Level-1 Muon trigger for Phase II

R. Richter

Max-Planck-Institute für Physik, München

Thanks to T. Kawamoto, O. Sasaki, G. Mikenberg, N. Lupu

Why is the present L1-trigger of the ATLAS muon spectrometer inadequate for luminosities $> 10^{34}$ cm⁻² s⁻¹?

Physics reasons for high p_T trigger problem

- a) The interesting physics is mainly at p_T above ~ 20 GeV (see e.g. W,Z cross section in the diagram)
- b) The slope of the inclusive p_T spectrum is very steep

 → threshold definition of the L1 trigger must be sharp to avoid high triggers rates from low p_T muons

fake L1 triggers $p_T > 10 \text{ GeV}$: $\sim 400 \text{ nb}$

regular L1 triggers $p_T > 20 \text{ GeV}$: ~47 nb

Detector reasons for high p_T trigger problem

Detector reasons for high p_T trigger problem (cont.)

Present trigger relies on tracks coming from the IP vertex:

- vertex smearing at the IP limits the p_T resolution
- vertex smearing will increase from 50 mm to ~ 150 mm at SLHC!

Particular difficulties in the End-cap:

- High rate of tracks, increasing with η
- Particles emerging from the EC toroid may fake high-p_T trigger
- Background rates form converted γ 's is much higher than in the barrel

Detector reasons for high p_T trigger problem (cont.)

ATLAS muon spectrometer integrated B strength vs. $|\eta|$

Difficulties to measure p_T over the full η -range:

- B field not homogeneous vs. η
- Region around $\eta = 1.5$ has $\int Bdl \sim 0!$ (This region can be masked off in L1).
- We measure momentum p but want to select $p_T \rightarrow$ requires much higher pos. resol. in the endcap than in the barrel \rightarrow (p = $p_T / \sin(\theta)$

Technical limitations of the present L1-trigger

- The transverse momentum resolution of the trigger chambers in barrel and end-cap was designed to just match the allowed L1 muon rate of ~ 20 kHz (out of the total 100 kHz). Was the result of an optimisation of many parameters, including channel count and cost.
- Barrel: RPCs have 30 mm wide pick-up strips $\rightarrow \sigma \sim 10$ mm in the bending direction. Insufficient for $p_T > 20$ GeV.
- End-cap:
 - TGC wires are spaced 1,8 mm, but are grouped by 6-31 wires along η , corresponding to a spatial resol. of 10.8-55.8 mm.
 - Typical angular resolution is ~ 3 mrad. We need: 1 mrad!
 - No tracking information from the Small Wheel (in front of the EC toroid) goes presently into L1. No selection of tracks from IP vertex (only a flag per sector may be used to avoid curling tracks emerging from the toroid).
- <u>Historical reason:</u> no notion/dream of lumi-upgrade beyond 10³⁴ cm⁻²s⁻¹ back in 1995!

L1 sharpening: L2 selectivity sets the scale!

L2 is using the full resol. of the MDT to test the p_T of the track \rightarrow rejects \sim 90% of muon L1 \rightarrow L1 upgrade can't do better than L2!

Max. rate reduction Barrel: 1/4.3 @ thresh. $p_T = 20$ GeV

Max. rate reduction Endcap: 1/2.6 @ thresh. $p_T = 20$ GeV

T. Kawamoto, Small Wheel Upgrade (http://indico.cern.ch/conferenceDisplay.py?confId=119122, 14.01.2011)

Q: how to get better L1-selectivity for phase-1?

Detailed discussion of phase-1 options given in the presentation by Osamu Sasaki

- Sharpen the L1 in the end-cap by determining the slope of the track in front of the toroid ($\eta = 1 2.7$)
 - The track must point to the IP vertex. \rightarrow This discards muons from π ,K decays and other background sources. Also corrects for the effects of multiple scattering.
 - All proposed L1 upgrade concepts for phase-1 require an extension of the current L1 latency of 2,5 μs to up to 3,2 μs.
 - Upgrade concepts for phase-1 must interface with phase-2 upgrade
 - For phase-2 we assume a L1 latency of 6,4 μs
- Build new Small Wheel with new technology (see O.Sasaki's talk), e.g.:
 - Trigger: new precision TGCs OR new thin Gap RPCs
 - Precision chambers: Small tube MDTs OR MicroMegas OR

Q: how to get better selectivity for phase-2?

- Aim: improve L1 trigger sharpness over the full η -range
- Save time and cost: get the maximum out of the existing h/w.
 - Use the high accuracy track position measurement in the MDT for L1 sharpening
 - However:
 - Present MDT readout is serial and asychronous with BX (asynchroneous = time of availability of data has no correlation with time of particle passage)
 - → not suited for fast L1 decisions
 - → need a concept for fast MDT readout

Include MDT info in L1: design concepts

Concept for fast MDT readout :

- Reduce drift time clock to BX frequency (40 MHz). Now: 16 * BX freq.
 (25 ns LSB error on drift time corresponds to 0,5 mm pos. error = 0,15 mm RMS! → good enough)
- Parallel R/O of drift tubes by individual scalers (one scaler per tube) → data available at the same time
- Synchronicity of R/O with BX: fixed time correlation with particle passage \rightarrow yields absolute drift time! \rightarrow Gives a constraint for d.t. of adjacent tubes.

• 2 options for fast readout:

- Use information from the trigger chambers to define RoI ("tagged method"):
 - only act when high-p_T trigger candidate (,,L0") was found by trigger ch's → much reduced rate of data transfer
 - use "RoI" defined by trigger ch's to selectively read the confined region, where the candidate track crosses the MDT \rightarrow save data volume to be transferred \rightarrow ignore hits from γ -conversions outside RoI!
 - requires about 2 μ s extra latency, i.e. 4,5 μ s total L1 latency \rightarrow not suited for phase-1
- Stand alone track finding in MDT chambers ("un-tagged method"):
 - transfer the complete hit pattern of the MDT tubes to USA15 for each BX and look for track candidates in the hit pattern.

MDT precision coordinates for the L1-trigger (,,tagged method")

- Use the high-p_T tag ("L0") produced by the trigger chambers to
 - define a search road in the MDT (RoI). (Similar strategy as in the Level-2)
- Required hardware:
 - trigger chambers to supply coordinates of RoI for each high-p_T candidate ("L0")
 - interface between trigger and precision chambers at the frontend to transmit RoI
- PRO:
 - small rates: readout activity only for high- p_T candidates ("L0"). ~ 100 Hz in a trigger tower.
 - small data volumina to be transferred
 - Immunity to the background hit rates. Most of the conversion background is outside the RoI!
- CON:
 - can't be done in 3,2 μs latency, not suited for phase-1
 - processing at the frontend (need rad-tol FPGAs)

Properties of the L1 trigger in the Muon barrel

There are a couple of things which help you!

- The trigger produced by the RPC is organized inside trigger towers:

 MDTs matching RPCs. There are about 200 trigger towers in the barrel (16 x 6 x 2).
- High p_T tracks, being 'nearly' straight, mostly travel inside one and the same tower
- The RPCs predict the location of the straight track with 1-tube-width precision! → defines search road for MDT hits

- The high-p_T RPC trigger is very selective and immune w.r.t. accidentals, even at sLHC
- The high- p_T trigger rate in any given tower is very low ~ 100 Hz, even at sLHC
- So: use the RPC trigger as a "seed", don't try "a stand alone" trigger with the MDT (my philosophy)

<u>Technical realisation:</u> Implement communication between triggerand precision chambers inside a trigger tower

A tentative recipe for tube readout

(don't look at the drift times, just read a fixed set of tubes)

MDT precision coordinates for the L1-trigger ("un-tagged method")

- In the EC region of the detector high-p_T tracks coming from the IP will impinge under well-defined angles onto the MDT.
 - Look for all patterns of drift times in the MDT, matching this projection angle
 - The resolution of the drift time is 25 ns LSB = 0.15 mm RMS
 - Combine with TGC L1-trigger the sector logic (USA15)

• PRO:

- No need for frontend communication
- Latency comes down to 2,6 μs if faster precision chambers are used (e.g. Small Tube MDTs with only 200 ns drift time.)
- Processing done in the radiation-safe USA15 (only parallel-to-serial conversion and fiber drivers at the frontend).

• CON:

- Large bandwidth requirements, as the MDT hit pattern is transferred to USA15 for each BX → large number of fibers (e.g. 1 per mezzanine card)
- Angle of incoming track must be known → most useful in the Small Wheel

See O. Sasaki, MDT based L1 (http://indico.cern.ch/conferenceDisplay.py?confId=105234, 29.09.2010)

Schematics of the un-tagged method

See O. Sasaki, MDT based L1 (http://indico.cern.ch/conferenceDisplay.py?confId=105234,

The detailed timing analysis yields an extra latency of 0,1 µs! → good for phase-1

Proposal of Precision TGC for the NEW Small Wheel and for the innermost part of the Big Wheel

- Many details described in O. Sasaki's talk w.r.t. the use in the Small Wheel
- This technology is also relevant in phase-2 for regions of high track density
- Preformance aim: better spatial resolution and higher rate performance
 - Strips along η -coordinate with e.g. 3,4 mm spacing and charge interpolation (using time-over-threshold) can obtain spatial resolution of 70 μ m per layer and 0,14 mrad angular resolution (lever arm = 350 mm) *)
- PRO:
 - Excellent position resolution
 - Excellent time resolution 95% in 1 BX → high immunity to conversion background
 - High rate capability due to low-resistive cathode coating was demonstrated
 - Cathode layers with pads can be used to resolve ambiguities

CON:

Resources needed for production of new chambers AND new electronics \rightarrow can't be done for the large areas of the Big Wheel

^{*)} see G. Mikenberg, L. Nachman "TGC test beam results" (http://indico.cern.ch/conferenceDisplay.py?confld=62717, 15 July 2009

Readout scheme of the TGC L1 trigger in the new Small Wheel

sTGC precision strip trigger logic

Scenarion for phase-2 (my personal guess)

NB: Phase-1 was already discussed by O. Sasaki → must smoothly interface to the phase-2 upgrade, to avoid extra work.

- Barrel scenario ($\eta = 0$ -1): gain factor > 10 in spatial resolution:
 - use tagged method, capitalizing on latency > 6,4 μs and RoI provided by RPCs.
 - Requires new elx for RPCs and MDTs + interface between both.
- End-cap:
 - (a) region in front of EC toroid ($\eta = 1 2.7$): need 1 mrad angular resolution:
 - Tagged or un-tagged method OR standalone TGC trigger, depending on available latency, see above. Technology in CSC region: still under discussion.
 - \rightarrow Un-tagged MDT and standalone TGC trigger can operate with 3,2 µs latency.
 - (b) region behind EC toroid (h = 1 2.7): need 1 mrad angular resolution:
 - High η -region (η > 1,9 –2,7): New high resolution TGCs? New MDTs for the inner part of the Big Wheel?
 - Low η -region (η <1-1,9): existing MDTs and TGCs maintained. Possibility to use tagged method? Simulation needed to show immunity against γ -conversion background.

Pointing accuracy of MDTs and TGCs in the Big Wheel

$$\sigma_{\text{track angle}} = \text{sqrt(2) *} \\ \sigma_{\text{pos.}} \text{ / lev. arm}$$

Some numbers:

(do not contain degradation from backgrounds)

	Location	pos. err./ modul	lever arm	track slope err.
		mm	mm	mrad
	Big Wheel alone	0.1	252	0.56
MDT	Big Wh Out. Whl.	0.1	7480	0.02

TCC	Big Wheel, high h	2.2	1700	1.8
TGC	Big Wheel, low h	11.4	1700	9.5

- MDTs are < 1 mrad because of good position resolution
- standard TGCs are > 1 mrad due to coarse wire grouping
- → MDT may be used to sharpen L1 trigger in the Big Wheel
- \rightarrow MDTs in the Outer Wheel with RoI from the TGCs is even better!

→ The TGCs in the Big Wheel point to the MDT in the Outer Wheel with an accuracy of $9.5 ext{ } 10^{-3} ext{ } ext{ } 7480 = 70 ext{ } ext{mm} ext{ } ext{ }$

PROs:

- •region of low track density and low BG
- •Lever arm = 750 cm
- = excellent ang. resol.

CON:

•needs to replace all Outer Wheel elx

Some brainstorming: why not use the Outer Wheel for phase-2

Overview of Upgrade options for phase-2

detector region			location in z (mm)	η-range	trigger chambers	precision chambers	candidate methods of L1-trigger upgrade	modification of electronics	
Barrel			0 - 6900	0 - 1.05	keep	keep	tagged	new	phase-2
	Small Wheel	MDT region	7200-7600	1 - 2	new	new	tagged, untagged or	new	phase-1
		CSC region	7115	2.0 - 2.7	new	new	high resol. TGC	new	
End-cap	Big Wheel	TGC "end-cap"	13800- 14300	1 - 1.9	keep	keep	tagged	new	phase-2
		TGC "forward"	13800- 14300	1.9 - 2.7	new	depends on background rate (??)	tagged or TGC stand alone	new	
	Outer Wheel		21300	1.3 - 2.7		keep	tagged	new	

Summary

- We are currently in an intense brainstorming for phase-1 and phase-2
 - Phase-1 decisions are more urgent, but should not preclude important options for phase-2
 - Relevant time scale of phase-1 has soon to be known (2016? 2018?)
 - Latency of 3,2 μs for phase-1 needs to become a firm commitment (basis for important muon design decisions for phase-1).
- open Q's for phase-1:
 - Trigger chamber technology in the Small Wheel (precision TGCs?)
 - Precision chamber technology in the Small Wheel (Small Tube MDTs, Micromegas, μ -pixels?)
 - Method for L1-trigger upgrade (non-tagged, precision TGCs)
 - Interface to L1-trigger in the Big Wheel in phase-2 (t.b. defined)
- open Q's for phase-2:
 - Concept for barrel upgrade (\rightarrow Q of accessibility of MDT elx in the Inner layer)
 - Trigger chamber technology in the "forward" Big Wheel (precision TGCs?)
 - Method for L1-trigger upgrade in the ",endcap" region of the Big Wheel ($\eta = 1-1.9$)
- Muon procedure for decisions
 - TDR for Small Wheel upgrade by autumn 2011