

# A subset of ATA over Ethernet as the control protocol in xTCA



David Sankey and Tim Durkin, ATLAS and CMS groups, Rutherford Appleton Laboratory

#### Introduction

Both ATLAS and CMS are investigating xTCA as a replacement for VME for use in upgrades to their triggers

- ATLAS L1Calo are considering ATCA
- CMS are considering double width µTCA

Both crate standards provide Gigabit Ethernet on the Base Fabric for module configuration and control

A generic solution for module control based on Ethernet could simplify configuration and control in the new environments

Conventional Ethernet solutions have to balance a trade-off between performance, complexity and reliability

A subset of the Storage Area Network protocol ATA over Ethernet promises simplicity, performance and reliability and could therefore be ideal





#### ATCA crate

#### **Ethernet on FPGA**

Implementations of Ethernet on FPGA vary in complexity and functionality between TCP/IP and raw Ethernet sockets

Each have different advantages and disadvantages:

- TCP/IP is connection based and reliable, but incurs the highest
- overheads, both on the FPGA and on the host processor
- UDP/IP has reduced overheads but is not reliable

• raw Ethernet sockets have significantly reduced overheads, giving potentially twice the throughput compared to TCP/IP, but again are not reliable and moreover require root privileges on the host

Solutions in use tend to be based on UDP/IP, typical examples including:

- commercial QuiXstream protocol
- existing implementation in CMS IPbus protocol

### **Storage Area Networks**

With the move away from dedicated networks such as Fibre Channel to

#### ATA over Ethernet

ATA over Ethernet (AoE) is an open-standards-based protocol that allows direct network access to disk drives by client hosts

- it is a Layer 2 protocol encapsulating ATA directly in Ethernet frames
- the source is released under the GNU GPL
- it is native in the Linux kernel since 2.6.11

It claims to "deliver a simple, high-performance, low-cost alternative to iSCSI and Fibre Channel for networked block storage by eliminating the processing overhead of TCP/IP"

• it achieves reliability by the host keeping track of packet

acknowledgements leading to a particularly simple implementation on the disk server

• it achieves performance by avoiding the nested memory to memory copies implicit in the default implementation of TCP/IP

It is a stateless protocol which consists of request messages sent to the AoE disk server and reply messages returned to the client host, again leading to a particularly simple implementation on the disk server

## AoE subset for xTCA

AoE messages have two formats:

- ATA messages
- Config/Query messages

AoE Config/Query messages are very interesting as a means of module control:

- they are inherently simple
- they are designed to be flexible in order to allow extra uses
- all the complexity involved in providing reliability is handled by the host
- user-mode tools exist avoiding the need for root privileges on the host

Encapsulating a protocol such as the CMS IPbus command set in an AoE Config/Query message can provide a simple and reliable way of implementing module control over the Base Fabric in ATCA and  $\mu$ TCA

Finally device discovery is supported by means of broadcast packets

### Work at RAL

The work at RAL is based on incrementally implementing this subset of the AoE protocol on a Xilinx development board as part of an AoE system on a private managed network:

- i) set up standard AoE using vblade on Linux
- · model and sniff device discovery on Ethernet

Ethernet, Storage Area Networks have encountered the same compromise between performance and reliability

In general this has been resolved with custom hardware:

- 'Converged Ethernet' for Fibre Channel over Ethernet
- TCP/IP offload engines for iSCSI

One implementation has however achieved performance and reliability with commodity hardware and networks, namely ATA over Ethernet

#### Further reading:

ATA over Ethernet <http://www.coraid.com/TECHNOLOGY/What-is-AoE> aoetools including vblade <http://aoetools.sourceforge.net/> HDMC <http://cdsweb.cern.ch/record/479712/files/p464.pdf> IPbus <http://projects.hepforge.org/cactus/trac/browser/trunk/doc/related/ Simple\_IP\_uTCA\_Protocol\_r1\_2.pdf> QuiXstream <http://www.tekmicro.com/products/product.cfm?gid=5&id=51> • implement AoE device discovery on development board

#### ii) progress to AoE Config/Query

- · model and sniff config/query with aoetools and vblade
- implement on development board

iii) implement AoE as a communication layer in existing protocolsimplement CMS IPbus command set as an alternative to the existing UDP/IP version

investigate implementation compatible with ATLAS HDMC software layer



Linux nodes and managed switch



Xilinx development board