

ATLAS LAr Calorimeter Electronics Upgrade

A. Straessner

on behalf of the ATLAS LAr Calorimeter Upgrade Group

ACES 2011 Common ATLAS CMS Electronics Workshop for HL-LHC March 9-11, 2011

- Motivation and plans for ATLAS LAr electronics upgrade a reminder
- Radiation tolerant front-end electronics
 - pre-amplifiers, shapers, summing amplifiers
 - ADC
 - Link-on-Chip
 - powering
- Back-end electronics
 - high bandwidth, low latency read-out driver
- Electronics for new detectors
 - MiniFCal readout

ATLAS LAr Electronics

Muon Detectors

Tile Calorimeter

- 4 high granularity LAr calorimeters
- 182486 readout channels
- pre-amplifiers and summing amplifiers (PAS chip) for Hadronic Endcap Calorimeters (HEC)
 → on-detector, inside LAr cryostat
 → qualified for 1000 fb⁻¹
- front-end and trigger-sum electronics
 - 1524 front-end boards (FEB)
 - \rightarrow on-detector
 - \rightarrow qualified for 700 fb⁻¹
- back-end electronics and more trigger logic
 - 192 read-out driver boards (ROD)
 - \rightarrow off-detector
- all electronics components

 → exceed 10 yrs operational time in ~2016

Toroid Magnets Solenoid Magnet SCT Tracker Pixel Detector TRT Tracker

Liquid Argon Calorimeter

Motivation for Upgrade of Read-out Electronics

- improve radiation tolerance
 - safety factors for electronic components are included (x 2-5), but are not sufficient to safely cover high-luminosity phase
- improve reliability:
 - replace ageing electronics (less severe for electronics immersed in LAr)
- exploit high detector granularity also as input to trigger electronics
 - reduce pile-up background by taking all detector layers into account
 - better isolation of leptons/photons from hadrons (π⁰)
 - sharper trigger threshold for hadronic jets

- go for free-running read-out scheme
- \rightarrow no trigger logic on front-end
- \rightarrow data buffer moved to back-end
- → larger trigger buffers and more latency budget for improved ATLAS trigger logic

HEC PAS development

 prepare HEC readout for 10 yrs HL-LHC 5-10 x 10³⁴ cm⁻²s⁻¹ x safety factor 10 design goals for pre-amplifiers (inside LAr cryostat): 			HEC preamp @ HL-LHC		
			TID	5 MRad	
			NIEL	2 x 10 ¹⁵ cm ⁻²	
	Specification of one preamplifier	(8 pre- & 2 summing amplifiers)	SEE	1.2 x 10 ¹² cm ⁻²	
Noise	50 nA with 0 pF Input load (100 nA with 200 pF)				
Max. input current	250 µA	1000 µA			
Dynamic Range	10 ⁴ (13 bits)				
Nonlinearity	1,4% (measurement old chip)		\longrightarrow LAr heating & boilir		
	2% (Specification)				
Power	15 mW	250 mW			
Gain variation	< 2%				
Peaking time for 220pF** (5 to 95%)		50 ns after RC ² -CR shaper with RC=CD=15ns			
Xtalk	< 1%				
Uniformity for 8 channels		<2% (measurement 1%)			
Input impedance	50Ω +/-2 Ω				
Temperature dependence	Gain, noise, power consumption : cha temperature ≤ factor of 2-3 for th	—→ LAr c	ooldown		

• status:

HEC PAS development

• different technologies tested: IHP CMOS, IHP SiGe, IBM SiGe

Foundry / Type	Size : w/l (µm²)	Equivalent Input Noise (nA) at room temperature
IHP nmos	750*0,24	116
IHP nmos	1500*0,9	82,5
IBM npn HB	0.12*20*2	204
BB96 / Triquint	4 Preamp + Summing stage	497

Material	SiGe		Si		GaAs			
Transistor	Bipolar HBT		CMOS FET		FET			
Foundry	IHP	IBM MB HB	AMS	IH	Ρ	AMS	Triquint	Sirenza
Туре	npn	npn	npn	nmos	pmos nmos pHEMT		МТ	
Gain change@ 2*10 ¹⁵ n*cm ⁻²	3%	2% 2%	5%	2%	3%	3%	2% 1.2*10 ¹⁵	2%
Gain change@	75%	11% 20%	55%	8%	11%	22%	2%	2%
Max.rad.(n*cm ⁻²)	2.2*10 ¹⁶	(3.6 7.8) *10 ¹⁵	2.3*10 ¹⁶	8*10 ¹⁵	8*10 ¹⁵	2.3*10 ¹⁶	1.2*10 ¹⁵	2*10 ¹⁵
@ 40 MHz	-					5		

• IHP nmos technology chosen for further prototyping

HEC PAS more details

- IHP nmos currently pursued as most attractive technology
 - neutron radiation criteria (most critical) passed (p and γ in preparation)
 - reasonably stable hi→low temperature behavior
 - good support by IHP, good models

- next steps:
 - include temperature and radiation into models (from S-parameter measurements)
 - choose adequate preamp circuits and prepare circuit test chip (2011)
 - design+produce a HEC-II preamp prototype chip (2012)
- if IHP CMOS not fully satisfying (due to noise, dynamic range):
 - backup solutions: IHP or IBM SiGe bipolar

LAr pre-amplifier and shaper development

- LAPAS chip in SiGe IBM 8WL BiCMOS process (0.13 μm)
- Status: progress in measurements with prototype board
 - two x 1 preamp and shaper channels
 - two x 10 preamp and shaper channels
 - ready for tests with ADC blocks
- example:

Dynamic Range 16 bits in 2 ranges 0.1% within each range INL ENI 75nA Max Signal Current 5mA Shaping Time Const. (RC) 15ns Shaping Function $(RC)^2$ -CR Ionizing Radiation Tol. 30kRad $10^{13} \, \text{n/cm}^2$ Neutron Equivalent Dose

- noise at 1 nF slightly larger than 75 nA due to additional feedback resistor to reduce input impedance to 25 Ω

- future plans with LAPAS ASIC:
 - daughter board design for upgrade prototype foreseen in spring 2011

LAr pre-amplifier and shaper development

- IHP SiGe 0.25 µm BiCMOS prototype development
- program:
 - optimize layout for preamp and differential shaper
 - submit first IHP prototype by spring/summer 2011
- example of ongoing work:

- to prevent clipping at 5 mA peak input, either:
 - increase VCC2 → best if process allows
 - decrease $R_{gain} \rightarrow$ lower gain, increased power in shaper to meet noise requirement

Radiation tolerant custom ADC

- NEVIS09 chip with OTA, S/H, CLK test structures
- IBM 8RF, 130nm CMOS technology
- inject sinusodial signal, check S/H rise/fall time and amplitude
- irradiation up to 2 x 10¹⁴ p cm⁻², 10 MRad (Si)
- no degradation visible

custom FEB ADC @ HL-LHC

TID	0.6 MRad		
NIEL	1.7 x 10 ¹⁴ cm ⁻²		
SEE	3.2 x 10 ¹³ cm ⁻²		

- NEVIS10 chip with two 4-stage ADC pipelines, 1.5 bits/stage, gain selector structures for each pipeline → true ADC
 Gain Selector
 Gain Selector
 OTA (nevis09)
 ADC Stage
- test programme ongoing: verify12-bit precision, power consumption, calibration strategy, sensitivity to bias voltage, cross-talk, radiation tolerance, analog and digitial gain selection
- go for full prototype chip in 2013

ATLAS LAr Calorimeter Electronics Upgrade

Link-on-Chip (LOC)

- 0.25 µm thin-film Silicon-on-Sapphire (SoS) CMOS technology:
 - low power, low cross talk \rightarrow good for mixed-signal ASIC designs.
 - economical for small to medium scale ASIC development.
- The first generation LOC prototype succeeded in:
 - the LOCs1, a 5 Gbps 16:1 serializer
 - 2.5 GHz ring oscillator VCO
 - 4 stage 2:1 multiplexing with the last stage specially designed for high speed.
 - input data and ref. clock in LVDS
 - output in CML at 5 Gbps
 - the 5 GHz LCPLL, a crucial step toward 10 Gbps speed.

n-channel FET

p-channel FET

UltraCMOS" Process

- The second generation LOC design status:
 - Initial thought was LOCs6 but
 - difficulties found in the 5 GHz clock fanout over the whole chip.
 - limitation in the GC process (evaluated to be rad-tol).
- a faster PC process (still 0.25 μm) will come out June 2011 that provides ~15% speed increase and 30 – 50% area reduction.
- a 180 nm will follow the PC process (announced by foundry)
- with the PC and the 180 nm feature size, the LOCs6 concept will be re-visited.
- now we step back to LOCs2: a 2-lane shared PLL serializer array.

LOCs2 design status on fast units:

- Buffer: Above 4.6 GHz, 200 mV swing, post layout and worst case (ss, 85 C)
- CML 1/2: Above 4.3 GHz, schematics with extra trace capacitance (ss, 85 C).
- CML Driver:

Eye diagram of 7-bit PRBS at 8 Gbps, with inductance peaking (7.4 nH), (ss, 85 C)

• CML 2:1 MUX:

this is the next step

LC VCO: Successfully prototyped at 5 GHz

DC Front-End Powering

• total power consumption per Front-End Crate remains the same (goal)

- about 80 W per Front-End Board, 3 kW per power supply
- fewer voltage levels on FEB (goal)
- power architectures:
 - Distributed Power Architecture with main converter and point-of-load converters (POL)
 - Intermediate Bus Architecture, additional set of bus voltages

FEB POL @ HL-LHC

TID	0.3 - 4.7 MRad
NIEL	0.3 - 4 x 10 ¹⁴ cm ⁻²
SEE	5 - 8 x 10 ¹³ cm ⁻²

Intermediate Bus Architecture

ATLAS LAr Calorimeter Electronics Upgrade

Main Converter Development

- 3 modules, 1.5 kW each
- n+1 redundancy, current sharing
- power cell topology: switch in-line converter
- voltage on switches reduced by factor 4

 thermal management and cooling is being simulated and
 measured

ATLAS LAr Calorimeter Electronics Upgrade

POL Converter

- non-isolated POL converter
- Interleaved Buck Converter with Voltage Divider IBVD
 - high step-down ratio (12-48 V to 3-5 V)
 - reduced switch voltage stress $(U_{in}/2)$
 - interleaved operation with automatic current sharing and ripple cancellation

Input voltage: $U_g = 12 V$ Output voltage: $U_o = 2.5 V$ Output current: $I_o = 3 A$ Operating frequency: $f_s = 1 MHz$ 350 nH air core inductors Dimensions: 6 x 4.2 cm²

• also tested:

- 2 Si based POL tested in different positions inside front-end crate:
 - LTM4602 6A High Efficiency DC/DC µModule
 - IR3841 Integrated 8A Synchronous Buck Regulator
- noise shielding necessary if inside Front End Crate

Buck converter – Component Irradiation Tests

Company	Device	Technology	Dose before damage seen	Observation Damage Mode	Potential Use	
IHP	$\begin{array}{c} \text{ASIC} \\ \text{custom LDMOS} \\ \text{V}_{\text{DS}} = 12\text{-}15 \text{ V} \\ \text{rating} \end{array}$	0.25 μm CMOS	53 Mrad	Slight Damage (Threshold Voltage Shift)	Voltage Rating too low for switch	
XYSemi	MOSFET (2 amps) LDMOS V _{DS} =15-20 V rating	0.25 μm CMOS	52 Mrad	Minimal Damage	Voltage Rating too low for switch	Synchronous Buck Converter
Enpirion	EN5360 #2	0.25 μm CMOS	100 Mrads	Minimal Damage	DC-DC Buck Converter (Clue for PWM)	EPC 1015 (40 V rating)
Enpirion	EN5360 #3	0.25 μm CMOS	48 Mrads	Minimal Damage	DC-DC Buck Converter (Clue for PWM)	0,10
EPC	EPC 1014 (40 Volt)	GaN	64 Mrad	Minimal Damage	Upper and Lower Switches	Sa 0,06 - Initial
EPC	EPC 1015 (40 Volt)	GaN	10 ¹⁵ protons	Slight Damage 300 mV Threshold Voltage Shift	Switches	0,04 - 1e15 p
EPC	EPC 1001 (100 V) 1012 (200 V)	GaN	In test 10 ¹⁵ protons	NA	Switches	0 0,2 0,4 0,6 0,8 1 1,2 V _{GS} (Volts)

- GaN devices meet the radiation qualification as converter switches.
- A suitable rad tolerant CMOS process can be used to produce a Pulse Width Modulator (PWM)
- Ideally a p-channel FET would be used for upper switch/drive for the upper switch.
- development ongoing

• R&D baseline:

- shaping and digitization at high rate on front-end board \rightarrow 128 channels at 40 MHz
- transfer rate to off-detector electronics \rightarrow 100 Gb/s per front-end board \rightarrow total 150 Tb/s
- radiation tolerant multi-fiber optical links at ~ 12 x 10 Gb/s
- fully digital off-detector trigger
 - \rightarrow digital pipeline on Read-Out Driver (ROD) \rightarrow long latency buffer up to ms
 - \rightarrow fast trigger sums on ROD \rightarrow calorimeter trigger
 - \rightarrow more flexible and higher trigger granularity

• ATCA/AMC prototypes with FPGA+SERDES >= 6Gbps

• ATCA/AMC prototypes with FPGA+SERDES >= 6Gbps

- sub-ROD module in production, based on Virtex 6
- Optical Link: Avago 12x10Gbps SNAP-12 transmitter/receiver
- sub-ROD injector module in production, based on Stratix IV
- delays in SNAP12 from Reflex Photonix
- plan to use LightABLE optical engine from Reflex Photonics (12 x 11.2 Gbps max.)

Development around Read-Out Driver

 high bandwidth ATCA demonstrator development

- ongoing FPGA development work:
 - interface for L0/L1 trigger
 - pre-processing of data for L0/L1 input
 - long-latency data buffering
 - interface to DAQ based on standard protocol, e.g. FPGA sending data to server CPU memory via 10 Gb/s Ethernet
- simulation of free-running read-out

- proof-of-principle for high bandwidth readout:
 - digital signal filter designed with minimal latency (3+2 FPGA clock cycles)
 - suppress electronic and pile-up noise @ 40 $\rm MHz$

Electronics for MiniFCal

- concept for readout of diamond/Cu sampling calorimeter
- preamplifiers: fast, low noise, rad-hard
- located outside MiniFCal
- preamps power from Front End Crates
- transition board as interface to FEB
- radiation levels (neutrons, all energies) LAr end-cap face 5000 kHz/cm² Front-End Crate 100 kHz/cm²
- expected S/N~440 for summed signal
- identified technology for further prototyping: SiGe

- progress in development and radiation testing of individual components needed for LAr electronics upgrade at HL-LHC
- many details need dedicated and further effort to be fully solved or optimized
- next logical step in 2011/12 is to combine the components to more complete prototype setups of the readout chain
- system and integration aspects are being worked out
- currently also working on a staged upgrade scenario of the LAr readout
 - better understanding of possible complications at an early stage
 - · less dramatic change when complete readout is going digital

