

Upgrade of the ATLAS MDT Front-End Electronics

Radiation-tolerant ASIC- and FPGA-design

Max-Planck-Institut für Physik
(Werner-Heisenberg-Institut)

1 Ap. Dg > tt

B. Weber, M. Fras, H. Kroha, O. Reimann, R. Richter Max-Planck-Institut für Physik, Munich, Germany

MDT big wheel

Muon Detector Front-End MDT big wheel Mezzanine cards **Electronics on** Optical fiber sitting behind for readout CSM board chamber Faraday cage Cables connecting the Electronics for readout of Slow control optical alignment system (ELMB) mezzanine cards to the CSM

Motivations for Upgrade

- Radiation tolerant electronics for sLHC
- Small tubes (1.5 cm diameter instead of 3 cm) => shorter drift-time and dead-time
- Fix some know issues in front-end
- Implement high p_T front-end trigger
 increase spatial trigger resolution for details, see "ATLAS muon trigger upgrades" presented by Robert Richter
- Use GBT for readout and slow control
- Cope with increased background
- Lower noise and cross-talk
- Re-spin of old chip (in HP 0.5um) not feasible

Prototypes and Studies

Analog

ASIC Design

- 4-channel ASD Lite Version 1: Designed in IBM 8RF-DM 130nm technology, consisting of analog blocks only. (Tapeout 2010)
- 4-channel ASD Lite Version 2: ADC/DACs (8 bit), JTAG test interface in Verilog, internal biasing, switched-cap Wilkinson ADC, and improved LVDS output drivers (Tapeout 2011)

	•		
Technology Comparison			
Technology	IBM 8RF-DM	IHP SGB25VD-TM2	Lfoundry LF150
Drawn MOS Channel Length	130nm	250nm	150nm
Technology Type	RF CMOS	SiGe CMOS	RF CMOS
Bipolar devices available	NO	YES (VP, VS, VH, VHP)	YES (Basic 3.3V NPN)
Metal Layers	8 (3 Thick Analog Metal)	5 (2 Thick)	6 (1 Thick)
Operating Voltages	1.5/2.5/3.3V	1.8/2.5V	1.8/2.5/3.3/5V
CMOS MOS types	Regular, Low Vt, Low	Regular, RF	Regular, Low-leak, RF,
	Power, Reg IO, 3.3V IO,		Native, Isolated
	RF		
Triple well possible	YES	YES (manual)	YES
PDK support	good (through CERN)	minimal	good
Rad hardness	good (measured)	good (measured)	unknown
Resistors	n+ diff, p+ p- poly,	n+ poly, n- poly, p+ poly	nw diff, n+ poly, p+
	tantalum, nw diff		poly, metal
Overall Variety of devices	High	Medium	High
MIMcap	2.05fF/um2 (4.1 for dual)	1fF/um2	0.98fF/um2
MPW/Enginnering run Cost	High	Medium	Low
Frequency of MPW run	Medium	Medium	High
PDK / Compatibility with tools	Good	Minimal	Good
MPW submitted through	CERN, MOSIS	Europractice MPW	Europractice MPW
Experience (Previous MPW submitted)	2	2	0
LDMOS module available	NO	YES	YES
Fab Location	Burlington, USA	Frankfurt-an-der Oder,	Landshut, Germany
		Germany	

Analog-centric Mixed-Signal Design Flow

Tools used (from Europractice):

- Synopsys Design Compiler
- Cadence Virtuoso 6.1.3 and Calibre
- Cadence Encounter 8.1

Results:

- Measured low noise and channel-to-channel crosstalk
- Good analog channel performance
- Successful neutron irradiation test showed minimal degradation

Things to improve

- LVDS drivers and supply coupling
- Use triple-well nfets for better noise immunity

Radiation Issues

General fault types

- User data SEU (Single Event Upset)
- Single event transients (SET)
- Silicon Effects (Surface + Bulk)
- Latch-up
- Changed transistor parameters
- Physical destruction

FPGA specific faults

- Configuration SEU (in S-RAM based devices)
- FPGA SEFI (Single Event Functional Interrupt)

Radiation-tolerant FPGA Design

• Full flexibility, comprehensive

- Time consuming
- Error prone, detailed knowledge mandatory
 Often lack in documentation + support
- Easy to use, flow well documented
- Good overall results
- Expensive (no discount on licenses)
- Limited flexibility
- Prototyping with normal FPGAs
- Improved radiation tolerance off the shelf
- Expensive and hard to get
- Limited in speed and device features