Evaluation of the Optical Link Card for the Phase II Upgrade of TileCal Detector

F. Carrió¹, V. Castillo², A. Ferrer², V. González¹, E. Higón², C. Marín¹, P. Moreno², E. Sanchis¹, C. Solans², A. Valero², J. Valls² ¹Dept. of Electronic Engineering, Universitat de València, Spain ²Dept. of Atomic, Molecular and Nuclear Physics, IFIC, Valencia, Spain

Framework

- TileCal detector measures the energy of hadrons in ATLAS experiment
- TileCal detector is divided in 64 modules in ϕ and 3 sections in z for a total of 256 modules
- The readout is carried out using 10.000 electronic channels which, after digitization, come out of the detector using optical fibers towards the Read Out Driver (ROD) module
- ATLAS requires radiation tolerant electronics capable of stable operation for, at least, 10 years
- The TileCal phase II upgrade is focused on replacement of most of the readout electronics, including the links between on- and off-detector electronics. This development is driven by the requirements for increased radiation tolerance, and the need to provide the level-1 trigger with more detailed information.
- The off-detector electronics consists of the preprocessor and the Read-Out-Drivers (RODs). The pre processor is responsible for receiving the data from the on-detector electronics and preparing it for the level-1 trigger and for the RODs.

Optical Link Card Description

- Specifications
- ROD double PU Board format (4.72 in x 6.85 in)
- 12 input channels up to 75 Gbps
- 12 output channels up to 75 Gbps
- Technical details
 - 1 Altera Stratix II GX EP2SGX60E FPGA
 - 1152 pins
 - 12 high speed transceivers @ 6.375Gbps
 - 534 I/Os
 - 2 SNAP12 connectors (12 fibers @ 6.25Gbps)
 - 1 SFP connector @640Mbps
 - 12 copper layers
 - Different thickness of dielectric: 2.5, 4 and 6 mils
 - Need high capacitance between planes but sufficient thickness for striplines
 - Over 2000 routes 5 mils width
 - Over 2400 vias 10 mils

Design details

- Power Integrity techniques
 - Custom Power Distribution Network with FDTIM method
 - High plane capacitance
 - Proper location for capacitor
- Signal Integrity techniques
 - Copper plane removal below coupling capacitor pads
 - Via design optimization
 - Low inductance connections
 - Dielectric material selection
 - Shielding lines
 - Ground return vias

Optical Link Card

Block diagram

- Block description
 - Configuration unit
 - Power supply unit
 - FPGA
 - Test bench
 - IO modules
 - Thermal management unit
 - Clock unit

Upgrade in ATLAS

- The upgrade Phase II of the ATLAS Tile Calorimeter implies a complete redesign of the read-out electronics.
- In order to increase radiation tolerance pipelines, derandomizers and L1 trigger preprocessor will be placed within the off-detector electronics.
- With this new architecture the data transmission for the read-out is one of the greatest challenges due to the large amount of data transferred out of the detector. Considering a sampling rate of 40Msps, bi-gain transmission, 12-bit samples and a total amount of 9856 channels with redundancy readout, the complete detector requires a total data bandwidth of around 20Tbps.

Architecture of the Upgrade TileCal read-out electronics

Read-Out Driver block architecture

GX transceiver latency

Test assembly for 1 link

01 02

a⁰ o⁴

- The Read-Out Driver functionality would reconstruct the Energy, Phase and Quality Factor at the Level1 rate. The Optimal Filtering algorithm can be implemented with DSP-like slices available in present FPGAs.
- The ROD system includes Energy calibration to different units, histogramming and monitoring for different magnitudes, Level 2 trigger algorithms (low Pt muon tagging and total transverse energy computation for a whole slice), data quality checks and raw data compression for offline data re-processing

OLC Tests

- Test 1: Measurement of latency and maximum data bandwidth
 - Raw data: 32 bit counter
 - No protocol
 - 6.25 Gbps per fiber
 - Latency of 108ns 17 clock cycles
 - Data correlation with Signal Tap
 - Total measured bandwidth of 75 Gbps
 - Power consumption 11.71 W

Test 2: 1 link GBT

- 1 link GBT protocol
- Power supply from external supply
- Receiver and transmitter located in different GX transceiver block
- 48 hours without errors
- BER of 3.61·10⁻¹⁵ with a confidence of 95%
- Total bandwidth of 4.8 Gbps
- Power consumption 7.128 W

Test 3: 12 link GBT

- 12 link GBT protocol
- Power supply from OMB
- Receiver and transmitter located in different GX transceiver block
- Internal FIFO compensation needed
- BER of 6.05·10⁻¹⁶ with a confidence of 95%
- Total bandwidth of 57.6 Gbps
- Power consumption 14.025 W

Test assembly for 12 links in bld. 175

Conclusion and future work

- First PreROD prototype fully functional and working
- Optical Link Card tested succesfully
 - Implement up to 12 links GBT protocol in Optical Link Card @ 4.8Gbps each one
- Ongoing test: OLC working with ROD
 - Test assembly
 - OLC connected to OMB as PU
 - OLC with SNAP12 connectors in loopback
 - OMB connected to ROD with G-link
 - OLC purpose
 - Simulate Front End data and sends its to SNAP12 loopback
 - Send received Front End data to OMB through Mezzanine connectors
 - OMB purpose
 - Send Front End data to ROD through G-link

OLC working with ROD scheme

GBT Implementation

- GBT protocol implementation resources occupation
 - Instantiation of 1, 2, 4, 8 and 12 GBT links without optimization

OLC	1 GRT link	2 GRT links	4 GRT links	8 GRT links	12 GBT links
OLC .					1
ALUTs	1976	3990	7820	15496	22953
	4%	8%	16%	32%	47%
Dedicated Logical Registers	1680	2904	4748	10497	15917
	3%	6%	10%	22%	33%
Block Memory bits	2560	5120	10240	20480	30720
	0.1%	0.2%	0.4%	0.8%	1.2%
GXB Receiver channel	1	2	4	8	12
	8%	17%	33%	67%	100%
GXB Transmitter channel	1	2	4	8	12
	8%	17%	33%	67%	100%
PLLs	1	1	1	1	1
	12.5%	12.5%	12.5%	12.5%	12.5%

Resource occupation for OLC

Timing problems

- Setup and hold required times not met
 - Errors due to non-synchronization between logic and GX transceivers
- Timing problems increase with the number of **GBT** links implemented
- Solved with FIFO compensation
 - FIFO compensation between FPGA logic clock and GX transmitter fixed this problem in OLC
 - Timing requirements not met using optimization 2,3 and 4

GX transceive

Comp FIFO

Comp FIFO

FIFO compensation

CRU

TX CLK Div Block