Machine plans

O. Brüning BE-ABP

Upgrade Studies and Taskforces

The Chamonix 2010 discussions led to five new task forces:

- -Planning for a long shut down in 2012 for splice consolidation
- -Long term consolidation planning for the injector complex
- -SPS upgrade task force
 - → accelerated program for SPS upgrade
- -PSB upgrade and its implications for the PS (e.g. radiation etc)
- -LHC High Luminosity project

→ investigate planning for ONE upgrade by 2018-2020

Launch of a dedicated study for doubling the beam energy in the LHC → HE-LHC

New Project Structure at CERN

- High Luminosity LHC Projects: L. Rossi
 → prepare for operation at 5 10³⁴ cm⁻² sec⁻¹
 → prepare for integrated luminosity of 3000 fb⁻¹ (200 fb⁻¹ to 300 fb⁻¹ / y)
 → Ready for implementation by 2020
- LHC Injector Upgrade Project: R. Garoby
 → remove bottlenecks in the PS and SPS
 → investigate options for PSB upgrade (energy)
- LHC Consolidation Project: S. Baird
 → have to consolidate existing injector complex for at least 15+ years

Linear Collider Project: Steinar Stapnes

Chamonix 2010 Scenario A:

- Two years at 3.5 TeV
- 2010: should peak at 10³² and yield up to 0.5 fb⁻¹
- 2011: ~1 fb⁻¹ at 3.5 TeV
- 2012: splice consolidation (and cryo collimator prep.)
- 2013: 6.5 TeV 25% nominal intensity
- 2014: 7 TeV 50% nominal intensity

Aggressive

Year	Months	energy	beta	ib	nb	Peak Lumi	Lumi per month	Int Lumi Year	Int Lumi Cul
2010	8	3.5	2.5	7 e10	720	1.2 e32	-	0.2	0.2
2011	8	3.5	2.5	7 e10	720	1.2 e32	0.1	0.8	1.0
2012									
2013	6	6.5	1	1.1 e11	720	1.4 e33	1.1	7	8
2014	7	7	1	1.1 e11	1404	3.0 e33	2.3	16	24

ACES 2011 Workshop, CERN, March 2011 Oliver Brüning BE-ABP M. Lamont @ Cahmonix 2010

250 bunches with ca. 2.6 10^{13} ppb L₀ > 10^{32} cm⁻² s⁻¹ \rightarrow Emittance in collision < 3 μ m

	VLC 1	media player		a [
He View Settings Audio Video Navigation Help				
14-Oct-2010 03:39:29 Fill #	: 1418 Ener	gy: 3500 GeV	I(B1): 2.62e+13	I(B2): 2.61e+13
	ATLAS	ALICE	CMS	LHCb
Experiment Status	PHYSICS	STANDBY	NOT_READY	PHYSICS
Instantaneous Lumi (ub.s)^-1	101.346	0.187	101.073	93.180
BRAN Luminosity (ub.s)^-1	103.804	0.184	97.665	81.519
Fill Luminosity (nb)^-1	4.2		3.5	3.4
BKGD 1	0.047	0.143	17,689	0.432
BKGD 2	288.000	0.452	0.002	1.315
BKGD 3	17.000	0.016	2.246	0.374
LHCb VELO Position Gap: 58	.0 mm	STABLE BEAMS	ТОТЕМ	STANDBY
Performance over the last 24 Hrs	1.0		1	Updated: 03:39:21
2.5E13 - 2E13 - 2E13 - 1.5E13 - 1E13 - 5E12 -			, F	-3000 (39) // -2000 // -1000
05:00 08:00	11:00 14:0	0 17:00	20:00 23:00	02:00
Background 1	Updated: 0	3:39:27 Background 2		Updated: 03:39:27
100 10 10 0.1 0.1 0.1 0.3:15 03:20 03:25	03:30 03:35	100 10 10 10 10 10 10 10 10 10	03:15 03:20 03:25	03:30 03:35
- ATLAS - ALICE - CMS - LHCB		— ATLAS — A	LICE — CMS — LHCB	
0:00:00 / 0:00 x1 00 "LHC Operation"				

Operation Experience in 2010:

Aperture

measured aperture better than expected
 allows further reduction of β* → β* = 1.5m

■ Emittance → able to operate the LHC with 50% smaller than nominal beam emittances (aperture & brightness)

beam-beam: → able to collide beams with larger than nominal beam-beam parameters

→ ability to exceed the luminosity target from Chamonix 2010
 → potential for achieving > 5 fb⁻¹ @ 3.5 TeV within 2 years

Estimated Peak and Integrated Luminosity

β* = 1.5m

day s	H.F	Comm with	Fills with	kb	Nb e11	ε μ m	ξ/IP	L Hz/cm ²	Stored energy MJ	L Int fb ⁻¹ 4 TeV	L Int fb ⁻¹ 3.5 TeV
160	0.3	150 ns	150 ns	368	1.2	2.5	0.006	~5.2e32	~30	~2.1	~1.9
135	0.2	75 ns	75 ns	936	1.2	2.5 2 1.8	0.006 0.007 0.008	~1.3e33 ~1.6e33 ~1.8e33	~75	~3 ~3.8 ~4.2	~2.7 ~3.3 ~3.7
125	0.15	50 ns	50 ns	1404	1.2	2.5	0.006	~2e33	~110	~3.2	~2.8

M. Meddahi @ Cahmonix 2011

ACES 2011 Workshop, CERN, March 2011

Chamonix 2011 decisions:

LHC running in 2012 to benefit from potential for reaching more than 5 fb⁻¹ before first long shut down.

Remain at 3.5 TeV beam energy due to unacceptably high risks for machine operation at beam energies above 3.5 TeV

Prepare for 18 month long shutdown in 2013 - 2014

Commissioning and operation at 7 TeV in 2015 and 2016

Upgrade LHC in 2017 to be compatible with operation with above nominal beam intensities (LINAC4 & Collimation upgrade)

Draft 10 year plan

[Outcome Chamonix 2011 presented @ LMC 81 - draft]

ACES 2011 Workshop, CERN, March 2011

- \rightarrow 1) maximize bunch intensity (beam-beam limit)
- \rightarrow 2) minimize beam size (constant beam power)
- \rightarrow 3) maximize number of bunches
 - Operation at beam-beam limit
 → use R for performance optimization leveling: LPS, SE, CC

→ What is the beam-beam limit in the LHC?!

Maximum bunch intensity:

Single bunch limitations from collective effects: -TMCI: \rightarrow ca. 3.5 10¹¹ particles per bunch

- Beam-beam limitations given by brightness (N/ ϵ), head-on and long range collisions:
- -Limit for total tune spread: $\Rightarrow \Delta Q = 0.02$ to 0.03 $\Delta Q = 0.0235$ achieved in 2010 operation without long range $\Delta Q = 0.02$ during routine operation in Tevatron

Long range beam-beam effects:

→ LHC is the first machine with large number of long-range beam-beam interactions that can be controlled by a crossing angle

→ maximum bunch intensity depends on minimum emittance

LHC Challenges: Beam-Beam Interaction

Tune Footprint: Pacman bunches alternating crossing planes

nominal beams all insertions Head-on & Long range

ACES 2011 Workshop, CERN, March 2011

PRST, A&B 8, 2005

ACES 2011 Workshop, CERN, March 2011

<u>Minimum β^* values:</u>

- Minimum β^* at 7 TeV for existing triplet: - β^* of 0.3m to 0.4 based on measured aperture and nominal settings
- HL LHC Upgrade: New scheme (ATS) for optics -β^{*} of 0.15m accessible for round beams @ 7 TeV -β^{*} of 0.3m / 0.075m accessible for flat beams @ 7 TeV
- Long range b-b can be alleviated by β^* increase ('soft landing'): \rightarrow assume 20% larger β^* as quoted for normal operation
- → β^* of 0.5m accessible for round beams @ 7 TeV with nom
 → β^* of 0.2m accessible for round beams @ 7 TeV with HL

Maximum number of bunches:

Limited by total beam power:

Current estimates of the hardware limitations from the nominal machine indicate a limit of 0.85 A (ultimate bunch current).

Might be limited by cleaning inefficiency and minimum lifetime: Existing collimation system good for ca. 0.4 A for minimum beam lifetimes of 0.2 hours Might also be limited by impedance issues & collective effects

→ Upgrade of the LHC collimation system under preparation

→ N > 1.7 10¹¹ not obvious at 25 ns bunch spacing (SEY < 1.3)
→ N > 4 10¹¹ possible for 50 ns bunch spacing and SEY = 1.7
→ instabilities in the SPS @ 25ns (ca. ultimate intensity & emittance)

cooling & e- heat for 25 ns spacing

going above N_b =1.7x10¹¹ & ultimate luminosity requires dedicated IR cryo plants; limit then becomes N_b ~2.3x10¹¹

cooling & e- heat for 50 ns spacing

going above N_b =2.3x10¹¹ & ultimate luminosity requires dedicated IR cryo plants; limit then becomes N_b ~5.0x10¹¹

2N

LHC Performance Estimates

Performance reach for LINAC4 + LIU + HL triplet:

		small β*		'large' β*	
Parameter	nominal	25ns !	50ns	25ns	50ns
Ν	1.15E+11	2.0E+11	3.3E+11	2.0E+11	3.3 E+11
n _b	2808	2808	1404	2808	1404
beam current [A]	0.58	1.02	0.84	1.02	0.84
x-ing angle [µrad]	300	420	520	270	320
beam separation $[\sigma]$	10	10	10	10	10
β* [m]	0.55	0.2	0.2	0.5	0.5
ε _n [μ m]	3.75	2.5	3.75	2.5	3.75
ε _L [eVs]	2.51	2.5	2.5	2.5	2.5
energy spread	1.00E-04	1.00E-04	1.00E-04	1.00E-04	1.00E-04
bunch length [m]	7.50E-02	7.50E-02	7.50E-02	7.50E-02	7.50E-02
IBS horizontal [h]	80 -> 106	25	37	25	37
IBS longitudinal [h]	61 -> 60	21	21	21	21
Piwinski parameter	0.68	1.92	1.95	0.78	0.76
geom. reduction	0.83	0.46	0.46	0.79	0.80
beam-beam / IP	3.10E-03	4.5E-03	4.9E-03	7.7E-3	8.6E-3
Peak Luminosity	1 10 ³⁴	7.0 10 ³⁴	6.3 10 ³⁴	4.8 10 ³⁴	4.4 10 ³⁴
Events / crossing	19	133	239	91	167

ACES 2011 Workshop, CERN, March 2011

LHC Performance Estimates

Performance reach for LINAC4 + LIU + HL triplet: long bunch

		small β*		'large' β*	
Parameter	nominal	25ns !	50ns	25ns	50ns
Ν	1.15E+11	2.0E+11	3.3E+11	2.0E+11	3.3 E+11
n _b	2808	2808	1404	2808	1404
beam current [A]	0.58	1.02	0.84	1.02	0.84
x-ing angle [µrad]	300	420	520	270	320
beam separation $[\sigma]$	10	10	10	10	10
β* [m]	0.55	0.2	0.2	0.5	0.5
ε _n [μ m]	3.75	2.5	3.75	2.5	3.75
ε _L [eVs]	2.51	3.0	3.0	3.0	3.0
energy spread	1.00E-04	1.00E-04	1.00E-04	1.00E-04	1.00E-04
bunch length [m]	7.50E-02	0.1	0.1	0.1	0.1
IBS horizontal [h]	80 -> 106	39	56	39	56
IBS longitudinal [h]	61 -> 60	58	56	58	56
Piwinski parameter	0.68	2.57	2.59	1.04	1.00
geom. reduction	0.83	0.36	0.36	0.69	0.70
beam-beam / IP	3.10E-03	3.6E-03	4.9E-03	6.8E-3	7.6E-3
Peak Luminosity	1 10 ³⁴	5.5 10 ³⁴	4.9 10 ³⁴	4.2 10 ³⁴	3.9 10 ³⁴
Events / crossing	19	105	186	80	148

ACES 2011 Workshop, CERN, March 2011

Summary Performance Reach:

Performance Reach of the LHC

-Existing LHC & injectors can reach nominal performance with 25ns and 50ns beams: $L = 1 \ 10^{34} \ cm^{-2} \ sec^{-1}$

-Small emittance option with 50ns operation can reach:

 $L = 1.7 \ 10^{34} \ cm^{-2} \ sec^{-1}$

(a) half nominal total beam current for 50ns beam option -Nominal machine with LINAC4 and 50ns operation can reach: $L = 2.5 \ 10^{34} \ cm^{-2} \ sec^{-1}$

with approximately nominal total beam current

-Full upgrade can reach:

 $L \ge 5 \ 10^{34} \ cm^{-2} \ sec^{-1}$

with geometric reduction factor!

→ CC & LRBB wires are ideal tool for leveling!

Options for Leveling:

CRAB cavities

-New technology not yet demonstrated for hadron storage rings

Wires for long range beam-beam compensation:

-New technology not yet demonstrated for hadron storage rings with long range beam-beam interactions

Operation with offsets at the IP:

-Has been difficult in other machines

Dynamic optics change during physics collisions:

-Has never been done so far in a collider plus complication of crossing angle in common beam pipes for the LHC

Spare Transparencies

LHC Challenges: Beam-Beam Interaction

Werner Herr et al, LPN 416

ACES 2011 Workshop, CERN, March 2011

LHC Challenges: Beam-Beam Interaction

Wonnon Honn &

ACES 2011 Workshop, CERN, March 2011

- beams dumped right after colliding (~1 minute)
- clear dependence of losses on number of H.O. collisions
- some bunches b2 lose up to 5% in the first few seconds
 - 12 out of 14 biggest losers from first 3 16-bunch injections
 - 10^{th} 11^{th} 12^{th} 13^{th} in the 16-bunch train

IPs: 1 5 2 8 - 1 5 8 - 1 5 2 - 1 5 - 2 8 - 8 - 2

ACES 2011 Workshop, CERN, March 2011

LHC Challenges: Beam-Beam Interaction

ACES 2011 Workshop, CERN, March 2011

Assumptions on Injector Performance I:

Existing injector performance:PAC'07;
CERN-AB-2007-037-50ns: 1.2 10¹¹ ppb; $\varepsilon_n = 2.5 \mu m$ to 3 μm (SB injection into PS)-50ns: 1.2 10¹¹ ppb; $\varepsilon_n = 1.5 \mu m$ (DB 2008 MD [EM])-50ns: 1.7 10¹¹ ppb; $\varepsilon_n = 3 \mu m$ to 4 μm (SB injection into PS) \rightarrow limited by SPS single bunch

→ 1.7 10¹¹ ppb; $\varepsilon_n = 1.8 \mu m$ to 2.5 μm with DB?!?

-25ns: 1.2 10¹¹ ppb; $\varepsilon_n = 3\mu m$ to 4 μm (GA)

-25ns: 1.4 10¹¹ ppb; $\varepsilon_n = 4\mu m$ to 10 μm (limited by SPS instabilities [EC])

Existing injector performance with LINAC4:

-50ns: 2.5 10¹¹ ppb; $\varepsilon_n = 3.5 \ \mu m$ (if not limited by e-cloud; scaled from 2008 MD and relying on lower γ -t SPS lattice)

-25ns: 1.4 10¹¹ ppb; $\varepsilon_n = 3.5 \mu m - 10 \mu m$ (single batch [MV 2010& EC])

Assumptions on Injector Performance II:

Injector performance with LINAC4 and upgrades (PSB):

-50ns: 2.7 $10^{11} \le 3.5 \ 10^{11}$ ppb; $\varepsilon_n = 1.1 \ \mu m \le \varepsilon_n = 1.5 \ \mu m$ (SG, MG and HD assuming a Laslett space charge limit of $\Delta Q = -0.3$)

-25ns: 1.7 $10^{11} \le 2.0 \ 10^{11}$ ppb; $\varepsilon_n = 1.5 \ \mu m \le \varepsilon_n = 1.8 \ \mu m$ (SG, MG and HD assuming a Laslett space charge limit of $\Delta Q = -0.3$)

Injector performance with LINAC4 and upgrades: SPS SC limit

-50ns: 3.3 10¹¹ ppb; $\varepsilon_n = 3.75 \ \mu m$ (SPS space charge EC: $\Delta Q = -0.13$)

-25ns: 2.0 10¹¹ ppb; $\varepsilon_n = 2.5 \ \mu m$ (SPS space charge EC: $\Delta Q = -0.13$)

Other Potential Performance Limitations

electron cloud effects → vacuum & beam instabilities

- → cryogenic load (in the LHC)
- \rightarrow bunch spacing (50ns) \rightarrow beam scrubbing

fill abort and overall efficiency
 beam scrubbing?

collective effects:

TMCI threshold of 3.5 10¹¹ppb (Q' = 0)
coupled bunch limit might be smaller

&

UFOs

for modified cleaning insertionsfaults and overall efficiency: → average turnaround time(R2E)→ statistics (Evian: ca. 25%)

LHC Challenges: Beam-Beam Interaction

LHC working point: n+m < 12

→ $Q_x = 64.31; Q_y = 59.32$ total tune spread must be smaller than 0.018 (SppS experience) keep $\delta Q = 8 \ 10^{-3}$ for operation tolerances and coupling!

bunch intensity limited by beam-beam force:

3 head-on/bunch $\rightarrow \xi_{\text{beam-beam}} < 3.3 \ 10^{-3} \rightarrow N < 1.2 \ 10^{11}$ 2 head-on/bunch $\rightarrow \xi_{\text{beam-beam}} < 5 \ 10^{-3} \rightarrow N < 1.7 \ 10^{11}$

Summary of LHC Intensity Limits (7 TeV)

3.5 TeV: run flat out at ~100 pb⁻¹ per month

5 TeV:

- start with optimistic end of 2010 level
- tight collimator settings and limits given by Ralph & Werner

	No. bunches	ppb	Total Intensity	beta*	Peak Lumi	Int Lumi [pb ⁻ ¹]
50 ns	432	7 e10	3 e13	2	1.3 e32	~85
Pushing intensity limit	720	7 e10	5.1 e13	2	2.2 e32	~140
Pushing bunch current limit	432	11 e10	4.8 e13	2	3.3 e32	~209

Either way should be able to deliver around 1 fb⁻¹

Collisions in 2010:

Fill	# bunc h	N bunch [10 ¹¹ p]	^ε _{H/V B1} @inj [μm]	^ε _{H/V B2} @inj [μm]	L _{peak} [10 ³² cm ⁻² s ⁻¹]	^ε _{H/V} @coll. from lumi [μ m]	Stable beams [h]	L _{int} [pb ⁻¹]	Reason for dump	^ε _{H/V} @end of coast (from Lumi scan) [μm]
1408	248	1.02	-	-	0.94	2.5	9.5	>2.4	Prog.	3.8/3.9
1410	256	1.04	1.5/1.3	1.4/1.6	1.3	1.8	0	0	BLM on MQW	-
1418	248	1.04	1.7/1.6	2.1/2.2	1.03	2.4	8.5	>2.4	PC IT.R1	-
1422	16	0.78	2.4/2.6	2.6/3.2	0.018	3.9	5.5	0.03	LBDS	-
1424	312	1.13	2.0/1.9	2.2/2.4	1.35	2.6	1	0.4	UFO LHCb BCM	-
1427	312	0.89	2.0/1.8	2.2/2.4	0.86	2.6	9.5	2.3	Prog.	3.2/3.1
1430	312	1.15	-	-	1.48	2.4	0.6	0.3	UFO Pt.4	-

Typical emittances in collision 2.5 μm

→ ca. 50% higher than nominal beam-beam parameter!!!

Pushing to nominal in 2016 and taking a couple of years to get to get to ultimate

[potential to push phase 1 upgrade not included]

ACES 2011 Workshop, CERN, March 2011

Updated LHC lumi vs. (end of) year

ACES 2011 Workshop, CERN, March 2011

3.5 TeV: run flat out at $\sim 100 \text{ pb}^{-1}$ per month

	Nb	ppb	Total Intensity	MJ	beta*	Peak Lumi	Int Lumi per month [pb ⁻¹]	
50 ns	432	7 e10	3 e13	17	2.5	7.4 e31	~63 (34)	
Pushing intensity limit	796	7 e10	5.1 e13	31	2.5	1.4 e32	~116 (63)	
16% nominal								

Should be able to deliver around 1 fb⁻¹

ACES 2011 Workshop, CERN, March 2011

Luminosity estimates