

DC-DC Power Conversion for the CMS Pixel Phase I Upgrade

Katja Klein

RWTH Aachen University

with input from: W. Bertl, A. Schultz von Dratzig, L. Feld, W. Karpinski, J. Merz, J. Sammet, M. Wlochal

ACES 2011 March 9th, 2011

Introduction

- Exchange of pixel detector around 2017 → number of readout chips will increase by factor 1.9 → unacceptable power losses in cable trays
- Compatibility with existing power supply chain desirable
 - → DC-DC buck converters with conversion ratio of 2-3

Output voltage regulation through PWM

Challenges

- Radiation tolerance of high voltage (~12V) power transistors
- Magnetic field tolerance → air-core inductor
- Minimization and control of noise emissions (conductive & radiated)
- Maximization of efficiency
- Minimization of material and size

DC-DC Converters for the Pixel Upgrade

Sector C

2.21

DC-DC Buck Converter Development

PIX_V7

M = 2.3gA = 28 x 16 mm²

Buck ASIC development: 10. 3., Technologies 1

ASIC: AMIS2 by CERN

lout < 3A

Vin < 12V

Vout configurable; 2.5V & 3.3V fs configurable, e.g. 1.3MHz

PCB:

2 copper layers a 35µm

0.3mm thick

Large ground area on bottom for cooling

Toroidal inductor:

L = 450nH

 $R_{DC} = 40 \text{m}\Omega$

Pi-filters at in- and output

Shield (optimized for space constraints)

Design guidelines from CERN group have been implemented.

The Shield

The shield has three functions:

- 1) to shield radiated emissions from inductor
- to reduce conducted noise by means of segregation between noisy and quiet parts of board (less coupling)
- 3) to provide cooling contact for coil through its solder connection to PCB, since cooling through contact wires not sufficient (see later)

We are currently investigating several technologies:

- Aluminium shields of various thicknesses (50μm, 150μm)
- Plastic shields (PEEK) coated with a metall layer (outside, inside & outside)
 - Aluminium sputtered (5 or 10μm)
 - Copper/tin sputtered (5 or 10µm)
 - Copper, galvanic deposition (20µm)
 - Parylene coating of whole PCB ...

We are also in contact with industry to find industrial affortable solutions (deep drawing, forming with water pressure, ...)

Efficiency

- → Efficiencies are around 75% (acceptable)
- → Expected to increase for AMIS4 ASIC
- → Inductance and switching frequency chosen as to reach highest efficiency

Conductive Noise at Converter Output

Differential Mode, with shield

PIX_V7 Vout = 3.3V Vin = 10V fs = 1.3MHz L = 450nH

Common Mode, no shield

Common Mode, with shield

Shield most effective above \sim 2-3 MHz \rightarrow large reduction of CM, less red. for DM

Conductive Noise

- Tests with pixel modules have to tell if noise is acceptable & what frequency is preferred!
- Measurement of S-curve with and without DC-DC converters
- Width of S-curve is taken as noise figure
- Pixel modules seem to be rather insensitive to ripple from PIX_V7 converters
- Work in progress ...

Radiated Noise Emissions

Field measured with pick-up probe ~ 1.5mm above coil

- → Both 150µm & 50µm Aluminium shields are very effective
- → Plastic shields coated with 10-20µm Alu or Cu are much less effective

Electrical Integration

Section A of supply tube:

- Up to 24 converters per channel
- 6 analog & 6 digital converters per cable and power supply
- Per converter: 2 or 2-3 or 4 or 4 modules of layer 1 / 2 / 3 / 4
- Max. current per converter: 2.8A (for L = 2×10^{34} cm⁻² s⁻¹)
- Large digital current changes due to orbit gaps (up to $1A \leftrightarrow 2.8A$)
- Bus PCB is under development

Mechanical & Thermal Integration

Mechanical & Thermal Integration

Thermal FE-Simulation

Thermal FE-Simulation

Thermal Measurements

- To cross-check simulations
- Peltier element set to +20°C
- Peltier regulates on external sensor that is fixed to copper block
- Temperate of coil, chip and PCB versus output current

Thermal Measurements

- → Converters need to be cooled
- → Cooling of chips via backside of PCB is very effective
- → Coil needs to be connected to cooling contact (shield)
- → Good agreement with FE-simulations

Summary & Outlook

- Low noise converters with reasonable efficiency in hands
- Large progress with mechanical, electrical and thermal integration
- Cooling of converters (chip and coil) under control

- Industrialization of coil and shield production
- Further study of sensitivity of pixel modules to ripple from DC-DC converters
- Production and test of bus PCB, thermal tests with cooling bridge,
- Turn next ASICs (AMIS3, AMIS4) into converters

Back-up Slides

DC-DC Buck Converter Development

Conductive Noise

2.5V, output noise

3.3V, output noise

The conductive noise at the input and output has been studied under various conditions:

- → Shield is more effective for switching frequency of (e.g.) 3MHz
- → Larger DM noise for lower inductance

Material Budget of one Channel

Material of 24 converters, bus PCB, cooling bridges & pipes for 1 supply tube channel:

	Component	Material	Volume	%	Weight	%	Density	X_0	%	λ_0	%
			$[\mathrm{cm}^3]$		[g]		$[\mathrm{g/cm^3}]$	[cm]		[cm]	
1	AMIS	Silicon	0.7200	1.329	1.6776	0.866	2.330	9.365	0.645	45.494	-0.779
_ 2	Add. Voltage Chip	Silicon	0.1080	0.199	0.2516	0.130	2.330	9.365	0.097	45.494	-0.117
3	Coil Windings	Copper	1.5984	2.949	14.3217	7.394	8.960	1.435	9.339	15.056	-5.225
4	Coil Core	Polyethylene	2.6232	4.841	2.4920	1.287	0.950	47.131	0.467	71.228	-1.813
5	Pi-Filter Coil	Copper	0.1248	0.230	1.1182	0.577	8.960	1.435	0.729	15.056	-0.408
6	Mainboard/Conv. Socket	Converter_Socket	2.3760	4.384	3.7541	1.938	1.580	23.771	0.838	-1.000	116.939
7	Converter Connector	$Converter_Connector$	0.8832	1.630	5.2020	2.686	5.890	2.858	2.592	-1.000	43.468
8	Shielding Alu	Aluminium	0.6480 E-01	0.120	0.1750E + 00	0.090	2.700	8.893	0.061	39.407	-0.081
9	Tin Coating	Tin	0.2880E- 01	0.053	0.2105E+00	0.109	7.310	1.207	0.200	22.300	-0.064
10	Heat Conducting Paste	SiliconeGel	0.1248	0.230	0.2371	0.122	1.900	16.615	0.063	-1.000	6.142
11	Bolt Spacer	Polyethylene	0.2600E-02	0.005	0.2470E-02	0.001	0.950	47.131	0.000	71.228	-0.002
12	Cooling Pipe	Steel-008	0.6100	1.126	4.7580	2.456	7.800	1.758	2.909	17.130	-1.753
13	Cooling Bridge	Aluminium	14.3520	26.483	38.7504	20.006	2.700	8.893	13.534	39.407	-17.925
14	Screws	Steel-008	0.7860	1.450	6.1308	3.165	7.800	1.758	3.748	17.130	-2.258
15	Washers	Steel-008	0.2530E-01	0.047	0.1973E+00	0.102	7.800	1.758	0.121	17.130	-0.073
16	Inserts	Aluminium	0.8930 E-01	0.165	0.2411E+00	0.124	2.700	8.893	0.084	39.407	-0.112
17	Cap/Res Ceramic	Ceramic	2.1216	3.915	8.4127	4.343	3.965	7.046	2.525	24.297	-4.298
18	Cap/Res Cu	Copper	0.1656	0.306	1.4838	0.766	8.960	1.435	0.968	15.056	-0.541
19	Cap/Res Ni	Nickel	0.6960E-01	0.128	0.6178E+00	0.319	8.876	1.428	0.409	15.324	-0.224
20	Mainboard Conn.	Mainboard_Connector	0.2804	0.517	0.8945	0.462	3.190	8.144	0.289	-1.000	13.800
21	Socket Mainboard Cu	Copper	1.2446	2.297	11.1516	5.757	8.960	1.435	7.271	15.056	-4.068
22	Socket Mainboard Poly	Polyethylene	1.8668	3.445	1.7735	0.916	0.950	47.131	0.332	71.228	-1.290
23	Converter PCB	T_FR4	3.0432	5.616	5.1734	2.671	1.700	12.000	2.127	48.363	-3.097
24	Converter Copper Layers	Copper	0.7104	1.311	6.3652	3.286	8.960	1.435	4.150	15.056	-2.322
25	Converter Nickel Layers	Nickel	0.5040E-01	0.093	0.4474E+00	0.231	8.876	1.428	0.296	15.324	-0.162
26	Converter Gold Layers	Gold	0.4800E-02	0.009	0.9048E-01	0.047	18.850	0.343	0.117	10.803	-0.022
27	Solder Paste	BGA	0.3072	0.567	2.7095	1.399	8.820	0.878	2.933	20.754	-0.728
28	Bus Copper Layers	Copper	5.6990	10.516	51.0630	26.363	8.960	1.435	33.296	15.056	-18.630
29	Bus FR4	T_FR4	14.1118	26.040	23.9901	12.386	1.700	12.000	9.861	48.363	-14.361

→ 194g and 6.6% of a radiation length per channel (acceptable)

Electrical Integration

Interaction Piont

	Position	Slot															
Shell	in z	1		2 3		3	4		5		6		7		8		
BPI	1	L1C1	L2C2														
BPI	2	L1C1	L2C2														
BPI	3	L4C1	L2C2	L4C1		L4C1	L2C2	L4C1									
BPI	4	L4C1	L3C2														
BPI	5	L4C1	L3C2														
BPI	6	L4C1		L4C1	L3C2	L4C1	L3C2	L4C1	L3C2	L4C1	L3C2	L4C1		L4C1	L3C2	L4C1	L3C2

	Position	Slot															
Shell	in z	1			2 3		4		5		6		7		8		
BPO	1	L1C1	L2C2														
BPO	2	L1C1	L2C2														
ВРО	3	L4C1	L2C2	L4C1		L4C1	L2C2	L4C1									
BPO	4	L4C1	L3C2														
BPO	5	L4C1	L3C2														
BPO	6	L4C1		L4C1	L3C2	L4C1	L3C2	L4C1	L3C2	L4C1	L3C2	L4C1		L4C1	L3C2	L4C1	L3C2

Thermal FE-Simulation

Support Plates: Aluminum 200 W/m/K

• Tubes: Stainless Steel (316L) 18.8 W/m/K

Coils: Copper 390 W/m/K

• Chips: Silicon 20 W/m/K

Screws: Stainless Steel 13 W/m/K

• Coil Filler: Conductive Glue: 22 W/m/K

- Transition Layer Between Support Plates: Assumed 50 % Contact 100 W/m/K
- Transition Layer Around Tubes: Assumed 95 % Contact 190 W/m/K
- Transition Layer Underneath Boards: Some Conductive Plastic 20 W/m/K
- Transition Layer Underneath Chips: 32 Contacting Strips (0.25 mm Dia) and a Ø2 mm Solder Patch resulting in 4.1 W/m/K
- Transition Layer Underneath Cover: At 4 Locations Solder 3 mm Wide, 1.5 mm High, 1.4 W/m/K

• Boards:

The Board Consists of a Glass Fiber Composite Coated with two Layers of Copper Foil. The Thickness of the Composite is **0.3 mm** and of the Foil **0.035 mm**. At Several Locations there are Feedthroughs from the Upper to the Lower Foils. The Upper Foil covers 70 % of the Total Area and the Lower 100 %. The Fraction of the Feedthroughs is 1% of the Total Area.

in plane: 63W/m/K accross plane: 5W/m/K

• Plastic Cover:

The Cover Consists of a Plastic Body coated with Layers of Aluminum Foil. The Thickness of the Plastic is **0.3 mm** and of the Foil **0.05 mm**. The Foils Cover the Plastic Totally. This leads to

in plane: 55W/m/K

accross plane: 0.2W/m/K

Thermal FE-Simulation

