

Two-in-one strip triggering module: construction and studies

J.Bernardini⁽²⁾, F.Bosi⁽¹⁾, G.Broccolo⁽²⁾, R.Dell'Orso⁽¹⁾, F.Fiori⁽³⁾, A.Messineo⁽³⁾, F.Palla⁽¹⁾, G.Parrini⁽⁴⁾, A.Profeti⁽¹⁾ & P.G.Verdini⁽¹⁾

(INFN⁽¹⁾, Scuola Normale Superiore-Pisa⁽²⁾, University-Pisa⁽³⁾ & University-Florence⁽⁴⁾)

Work done within the CMS Tracker upgrade framework, in coordination with parallel upgrade activities see ACES contribution talks: D.Abbaneo, H.Chanal, M.Mannelli, S.Mersi.

Outline	Introduction	Method validation	Simulation	Prototypes	Conclusion
۲	0 0	000	000	00000	0 0
		Outl	ine		

1. Introduction: *ideas and model*

- 2. Method validation: *study with LHC p-p collisions*
- 3. Simulation: *performance in LHC high luminosity scenario*

4. Prototypes: *two-in-one modules assembly and test*

1. Conclusions

Two stacked sensors represents a two-in-one module, that can :

- 1) Achieve good angular resolution (strip pitch (\cong 100 µm) over 2mm lever arm)
- 2) Measure 2 independent points for tracking
- 3) Select a direction for triggering

\rightarrow Open the possibility to cut on P_T for a track trigger

11/03/2011

A.Messineo - ACES , CERN 9-11 March 2011

Implementation of two-in-one module

Two micro-strip stacked sensors assembled in a single readout unit

Implementation of two-in-one module

Two micro-strip stacked sensors assembled in a single readout unit

Two-in-one module design optimizes the common use of:

- 1) Assembly infrastructures: mechanical, material, ROC, cooling, cabling,
- 2) Read out electronics: simple logic to correlate hits, no need of high speed links or external correlation circuits, saving power,....

→ Maximize Benefit/Cost

A.Messineo - ACES , CERN 9-11 March 2011

11/03/2011

Method Validation with CMS Tracker

Performance of two-in-one modules measured in real data

- 7 TeV p-p collisions data: good quality tracks, $\pi \& \mu$ tracks

Outline	Introduction	Method validation	Simulation	Prototypes	Conclusion
0	0 0	0 🖸 0	000	00000	0 0
		• • •	•••		

SS: sensitivity to CW

- Tracks Cluster Width correlated with the P_{T}
 - ✓ Good P_T sensitivity with cluster reconstruction threshold S/N =6

Track selected with Cluster
Width < 3

✓ High P_T tracks are selected efficiently

11/03/2011

A.Messineo - ACES , CERN 9-11 March 2011

DS: sensitivity to P_T

- Track P_T as measured by the hits distance on the 2 planes
 - Clusters are correlated off-line after a rotation for the stereo angle
 - High P_T tracks have clusters almost overlapping
 - Clusters for Low P_T ones are far seach other Ern 9-11 March 2011

- TOB Layer 2 3 12 1 2
 - Tracks selected with cluster separation d< 1.5 mm
 - ✓ Efficient selection of high P_T

tracks

Outline	Introduction	Method validation	Simulation	Prototypes	Conclusion
0	0 0	000	• • •	00000	00

Simulation of two-in-one module

- LHC Scenario: Phase II
 - 200 events per Bunch-X
 - Full Simulation of CMS
 - Minimum Bias
 - Single muon
- Sensors
 - **Thickness:** 300 μm
 - **Strip pitch:** 90 μm
 - Strip length: 4.6 cm
 - **Strip #** : 1024/module
 - Sensor planes separation: Δ = 2mm
- Front End

11/03/2011

- Single threshold digital micro-strip read-out
- Definition of a Stub
 - Stub = 3 vector (global pos.) + 2 vector (flight dir.) + scalar (P_T)

A.Messineo - ACES , CERN 9-11 March 2011

Outline	Introduction	Method validation	Simulation	Prototypes	Conclusion
0	0 0	000	0 🖸 0	00000	0 0

P_{T} measurement

- Single- μ events P_T : 2-20 GeV/c
- Evaluation of reconstructed momentum from the Stub $\frac{\sigma(P_T)}{P_T^2_{measured}} \gg 5\%$

Layer at R=102 cm equipped with two-in-one modules. P_T selection strongly depends from P_T Stub resolution $\sigma(p_T)$ that :

(1) increases as measured P_T^2

(2) is not gaussian and skewed toward larger $\rm P_{T}$

Inefficiency appears for P_T larger than 5 GeV/c because of (1) and rejection is milder at high P_T because of (2)

Outline	Introduction	Method validation	Simulation	Prototypes	Conclusion
0	0 0	000	000	00000	0 0

Trigger Rate

- Study of Stub trigger rate for
 - 200 Minimum Bias overlapping events
 - X-ing rate: 40 MHz
- Simulation of a simple layout
 - Full and detailed material description(inner detector 4 pixel layers & services)

Stub production rate per cm²

layer	L1	L2	L3
Radius (cm)	51	86	102
Strip Occupancy (%)	1.5	1.1	0.9

Cut on Stub reconstructed P_T , also at 1-2 GeV/c, is effective to reduce the rate at fraction of MHz/cm²

Manageable level for Triggering purposes

Outline	Introduction	Method validation	Simulation	Prototypes	Conclusion
0	0 0	000	000	••••	00

Two-in-one Prototypes

• Detector assembled with production components of the present CMS tracker

Outline	Introduction	Method validation	Simulation	Prototypes	Conclusion
0	0 0	000	000	\odot \circ \circ \circ \circ	00

Prototypes

• Detector assembled with production modules of present CMS tracker

A.Messineo - ACES , CERN 9-11 March 2011

11/03/2011

2011

Outline	Introduction	Method validation	Simulation	Prototypes	Conclusion
0	0 0	000	000	00000	• •

Conclusions

- Two-in-one module design is a viable solution for Tracker Trigger. Proven to work with:
 - Real LHC collision data
 - Prototypes
 - Full Tracker simulation
- Main features:
 - Low mass and HW optimized
 - Capable to decrease P_T trigger data rate down to ~ 100 KHz /cm²

- Local trigger & P_T evaluation

11/03/2011

Outline	Introduction	Method validation	Simulation	Prototypes	Conclusion
0	0 0	000	000	00000	0 🖸

Conclusions

• Work in progress:

- Some R&D remain to be done, this activity will continue since is needed for the Phase II
 - Implement detector optimized design (sensor/layout)
 - Trigger performance simulation study on benchmark channels
 - Particle beam prototypes study
 - INTRA sensors in module connectivity optimization & packaging
 - INTER layer/Rod module studies (HW, SW as A.M., ..)

References

- Concepts for a tracker trigger based on a multi-layer layout and on-detector data reduction using a cluster size approach. JINST 5:C08002,2010
- Track momentum discrimination using cluster width in silicon strip sensors for SLHC. Published in *Prague 2007, Electronics for particle physics* 80
- Tracking in the trigger: From the CDF experience to CMS upgrade. **PoS VERTEX2007:034,2007**
- Design and development of micro-strip stacked module prototypes for tracking at S-LHC. JINST 5:C11018,2010
- Design and development of micro-strip stacked module prototypes to measure flying particle directions. JINST 5:C07014,2010. Talks
- http://indico.cern.ch/contributionDisplay.py?sessionId=0&contribId=16&confId=68677
- G. Parrini , Talk at Joint SLHC Trigger-Tracker meeting 2007, CERN and TWEPP 2007
- http://indico.cern.ch/getFile.py/accesscontribId=80&sessionId=29&resId=0&materialId=paper&confId=11994

▶ The two approaches for a quick "measure" of pT

Simplified for mulas

Using acceptances W/R < 0.2 the stub width formula can be simplified

$$TW_r$$
 " $F + (1 + F^2) (x/R)$

$$F = \pm \frac{1}{\sqrt{\frac{pT_{\min}^{0}}{\frac{pT_{\min}}{\frac{p}{k}}}}}) \pm \frac{pT_{\min}^{0}}{pT} \times \frac{pT_{\min}^{0}}{\frac{p}{k}} + \frac{1}{2} \frac{pT_{\min}^{0}}{pT} \times \frac{pT_{\min}^{0}}{\frac{p}{k}} + \dots,$$

If pT^{*} ≫ 1

$$TW \quad " \quad \pm \frac{\# pT_{\min}}{\sqrt{9}} \frac{\&}{pT} (\pm x/R) = \pm 1/pT^{2} + x/R$$

"<u>Linear</u>" cylindrical layer (pT* any) + flat layer (pT* =!)

Giuliano Parrini - Pisa meeting 4-5 / 05 / 09 7

pT selection : from TW to pT

Lorentz spread

After the digitization the inverse transformation gives not unique results:

if $TW_{measured} = N \times pitch$ we have N-2 % TW < N

This observation is the starting point to calculate the threshold of the selection

Giuliano Parrini - Pisa meeting 4-5 / 05 / 09 13

TOB Layer 6

- Layer 6:
 - R = 108 cm
 - Strip pitch = 120 μ m
- Good tracks only:
 - Chi2 < 2
 - Nhits > 11
 - Npixel > 1
 - Z0 < 10 cm
 - D0 < 5 cm (0.1 cm)

- Incident angle (degrees)
 - In red pt > 3 GeV

November 8 2010

A.Messineo - ACES , CERN 9-11 March Lyon: meging on sLHC tracking trigger

Study of CW sensitivity

• Good pt selection with clusterizer $\sigma = 6$

· Pt distribution before and after cut

TOB Layer 2

- Layer 2:
 - DS module used to mimic stacked modules with 2 mm separation
 - R = 70 cm
 - Strip pitch = 183 μ m
- Good tracks only:
 - Chi2 < 2
 - Nhits > 11
 - Npixel > 1
 - Z0 < 10 cm</p>
 - D0 < 5 cm (0.1 cm)
 - Incident angle distribution
 - In red pt > 3 GeV
 - In yellow pt > 20 GeV

November 1 8 2010

A.Messineo - ACES , CERN 9-11 March Lyon: meeting on sLHC tracking trigger

Study of PT module sensitivity

- Correlation of track flight path measurement with P_T
 - Tracks selected if clusters separation smaller than 1 mm
 - selection of high P_T tracks

- Pt distribution (lin & log scales)
 - In red clusters distance < 1 mm

A.Messineo - ACES , CERN 9-11 March 2011

Cluster Width measurement performances: Module B

- Cluster Width (# of strips):
 - Increases until top & bottom sensors produce events with 1 cluster
 - + 80 μm pitch module has larger CW
 - Drops at 2 clusters splitting angle
 - Smaller for 80 μm pitch module
 - Follows a standard behavior at larger angles (where 2 cluster events are collected)
 - Slope compatible with standard tracker modules

A.Messineo - ACES , CERN 9-11 March 2011

Single-n events study

 \gg resolution of (reco from stub) $1/p_T$ as a function of (MC truth) n p_T :

25

