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14:00 - 14:05 Introduction 05
Speakers: Magnus Hansen (CERN) , Philippe Farthouat (CERN)

14:05 - 14:25 Status of the DC-DC ASICs development 20
Speaker: Stefano Michelis

Material:  glides | | | |

1425 - 14:45 Experience with senal powering on the ATLAS SCT stave 20

Speakers: Mitch Newcomer (University of Penngylvania) , Mitchell Franck Newcomer (Departm.of Physics &
Astronomy)

Material: Slides | (| | ™

14:45 - 15:05 DC-DC modules development at CERN 20
Speaker: Cristian Alejandro Fuentes Rojas (Univ. Tecnica Federico Santa Mara (UTFSM)-Unknown-Unknown)

Material:  gjlidas i pes|

15:05- 15:25 Shunt LDO regulator in FEI4 2¢°
Speaker: Laura Gonella (University of Bonn)

Material:  glides | @ | E

15:25- 15:45 Switched capacitors DC-DC in FEI4 20"
Speaker: Yunpeng Lu

Material:  gjlidas i 'E

15:45- 16:05 DC-DC development for the CMS pixel upgrade 2¢°
Speaker: Katja Klein (I. Physikalisches Institut (B))
Material:  glidas | @ | E

16:05- 16:25 DC-DC stability studies 20
Speaker: Federico Faccio (CERN)

Material:  glidas | @

» http://indico.cern.ch/conferenceDisplay.py?confld=127662
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Serial power (Mitch Newcomer)

» Stavelet (4 modules, 8 readout hybrids) used with serial
power
» Protection scheme with a small hybrid (BNL)
Over-voltage, ON/OFF
» Serial Power Protection (SPP) chip development in
|30nm

Modulation of the main power line to send commands (e.g.
ON/OFF)
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Stavelet Numerology (@RAL)
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Thermal Images of the Stavelet in Operation (RAL

All hybrids on

Slow control disables
odd hybrids

Slow control disables
even hybrids

Each hybrid may be bypassed using the PPB |-wire operated shunt
Voltage differences consistent with 2.5V per hybrid
2.7V overheads: bus tape, bond wires, PPB PCBs, external cabling
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First Prototype of SPP block ready for testing

. IBM CMOS8RF 130nm Technolo
Analog Control loop includes: 3 gy

* 1.1V BandGap . Connector Pin compatible with BNL

™ SPP 2.3V internal sh unt regulatnr. Protectiion board socket on HYbrid

* Hybrid Regulation loop suitable for
use on hybrids or staves.

Submitted for fab May 2010
Returned Jan 2011

Chip on board test PCB prepared
but due to bond pad size: 60Xg95um
Pad layout needed to be reworked.
To be sent out this week.

Test board plug in compatible with
ABCn Modules and Stavelets.
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SPP full Prototype Chip Layout (2011 submission)

Shorting Transistors
scm X ..6um Added
63mV @ 1.6A

SPP chip as in 2010
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Serial Power Protection and Control

* Single Global power line supplies each SPP with independent power
* SPP is addressable to turn "on"” and “off" a hybrid.
*Built in Transistor capable of shunting hybrid current Independent of ASIC based Shunt Transistors
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Summary

*Serial Powering shown to be successful at the Module and Stave Level.

*Current Source operates reliably with a 5A, 2.5V ABCn based Stavelet.
(Should be easier to build for a lower current, 1.2V 130nm Chipset.)

*One wire protection shown to work with Stavelet. Remote addressing works.

'Opimizatinn of G&S underway
1. AC coupled Sensor.
2. AC coupled signaling.
3. Need to study coupling of module Reference to EOS reference to
minimize common mode.

*Testing of fabricated SPP Control loop including Bandgap, Opamp and hybrid
regulation will start in a couple of weeks. Results will feed into submission of first
complete SPP ASIC. Expected in Q2 2011
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Shunt LDO regulator (Laura Gonella)

» Included in FEI4 and recently tested
» Behaviour well understood

» Good candidate for serial powering of the pixel
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Shunt-LDO reminder

Combination of a LDO and a shunt transistor

Shunt-LDO: simplified schematic 2 Shunt-LDOs in parallel:
equivalent circuit

Vin

Vour1> Vourz
v ; - e VS1 < VsZ

|,
lout VitV =VaurotVe,

- Shunt-LDO can be placed in parallel without problems due to mismatch
- Shunt-LDO with different V_ can be placed in parallel

—> Shunt-LDO can cope with increased [,

- Normal LDO operation when shunt circuitry is off
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() Shunt-LDO schematics including 10 pads
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Conclusion

» Both regulators on chip have been operated stand-alone
as Shunt-LDO and LDO

» Regulator basic functionalities have been asserted
» The regulator works fine!

» More results to come...
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Switched capacitor DC-DC
(Yunpeng Lu)

» Included also in the FEI4
» Vout /Vin = Y4

» Some optimisation to be done with respect to noise
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Power Options for FE-I4

- Basically the power rail inside FE-I4 are devided into 4 groups and
attached to seperate pads:

— VDDD1/GNGD1, VDDD2/GNDDZ2, VDDA1/GNDA1, VDDA2/GNDAZ2

— In rﬁddition dedicated power nets for PLL, EFUSE and T3 isolation as
well.

« 3 isolated power modules in the chip.
— Two linear-shunt LDOs(ShuLDO)-> Laura’s talk.
— One switched capacitor DC-DC converter-> this talk.
— Neither is hard-wired inside the chip. Thus Wire connections outside the

chip needed.
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Efficiency vs Clock frequency

Vin=3.3V, Rload=5Q
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« Simulation result shows Vefficiency around 90%, while the test
result shows Vefficiency of about 84%.

- Just take 1TMHz as the optimal frequency for the following test.
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Noise In Threshold Scan

DC-DC powering analog-->Noise increased; mn ﬁ
DC-DC powering digtal--> Noise seemed mé_ RMS 2588
good; mné— N
VDDD1(Receiver) g 2_
: Good zmnE_
VDDDZ(logic) D R — 2000~
FE-14A TVppai(sias) 1500
Nﬂ Good 1000
VDDAZ2(Pixel)  f#-{---------==uns i
DCDC_Vout “j e | R R W
- Noise(e-)
Is it safe to say:
External_Power 72 396 good for digital, but
- not good for analog?
DCDC _VDDD2 /6 356+27=383
DCDC_VDDA2 96 121+148=269 | Well It depends...
DCDC_ 104 76+169=245
(VDDA2+VDDA1+VDDD2) 1
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Conclusion

» We have seen that the DC-DC converters are now very
much optimised and do not introduce extra noise

» We have seen good progress on the serial power side in
terms of protection and control

» The power working group has only been attended by
people from the tracker community

» However the work done for getting a radiation hard POL
DC-DC converter is in my view very relevant to the
calorimeter and muon community
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