

# Digital Readout for the CMS Pixel Phase I Upgrade

W. Erdmann, PSI for the CMS Pixel Group ACES 2011 09 March 2011



### **Introduction – Boundary Conditions**

#### CMS Pixel Phase I Upgrade

- Performance improvement
  - More layers for robust pattern recognition
  - Reduction of material in tracking region
  - Higher rate capability, reduce readout deadtime
- Minimal disruption of data taking
  - Interface to CMS (DAQ, control)
- Re-use existing services (power cables, readout fibers, cooling tubes)
  - -3 layers + 2 disks  $\rightarrow$  4 layers + 3 disks factor 1.6 increase of channels
  - Readout: analog coded 40 MHz → digital coded 320 MHz
    - ~ factor 2 bandwidth increase



# Readout overview (1)





### Readout overview (2)



New optical hybrids, existing laser driver and level adapter chips, new lasers

re-use exiting fibers

New daughtercards with receiver arrays (Zarlink)



# **Optical hybrid tests**

Existing laser driver (LLD) + Laser 320 MHz



#### J. Troska



### With level adapter (ALT)





### **Barrel TBM architecture**



Forward detector has one fiber per two modules: separate MUX

6



# **Optical Hybrid**





# Supply tube with opto hybrids & DC/DC converters





# POH opto hybrids in supply tube slot



#### Cross section of one slot on supply tube





### FED / Optical receivers (HEPHY)

#### •FED

- Interface to CMS DAQ
- Optical receivers on daughter-cards
- 12 PIN array (ZARLINK)
  - + de-serializer in FPGA
- Tests with simulated data patterns
  - Unacceptable bit errors observed
  - Deterministic, errors occur at sequence segments with largest 0/1 imbalance
  - Pseudo-balancing not sufficient
  - much better with balanced code

H. Steininger





### Link tests (CERN)

Similar conclusion from CERN test, although less severe (different RX version)



RX designed for GHz

balanced encoding preferred

TBM: 320 -> 400 MHz



- •The phase I upgrade of the CMS pixel detector must re-use exsting fibers, the bandwidth per fiber must be doubled
- A digital 320 (400) MHz link will replace the analog data transmission
- Tests with possible components and prototypes are underway



#### **Forward TBM Architecture**





#### **Barrel TBM Architecture**



#### E. Bartz / B.Meier

### Micro Twisted Pair Cable



ACES 2011

#### First Choice:



- twisted pair self bonding wire
- 125 µm wire diameter (4um Cu)

#### Electrical characteristics:

- Impedance: 50 Ohms diff. (low)
- $v = 2/3 c_0 (5 \text{ ns/m})$

15

• C = 100 pF/m, L=250 nH/m



### Verilog Simulation of Readout Logic

Full module digital functional simulation includes:

```
module readout_roc
#(parameter ROC_NR=0)
(
  input clk40.
  input clk160.
  input reset.
```

output read. input[22:0] din input flag. input empty

16 ROCs: DCOL Readout, Readout Buffer, ROC Readout, data mux & serializer

Verilog

model

**DigiPix** 

Library (C++)

- Dual TBM: 2 TBM5 cores, digital readout logic, serializer (no programming logic I2C)
- 320 MBit/s serial data output
- FED decoder

physics simulation

PYTHIA, GEANT

or

random data

or

handwritten events

Simulation speed: 60 μs/sec

