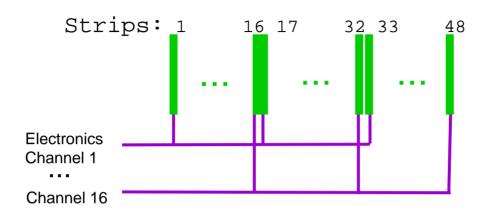

CSC Endcap Muon ME1/1 Upgrade Status

Mikhail Matveev Rice University

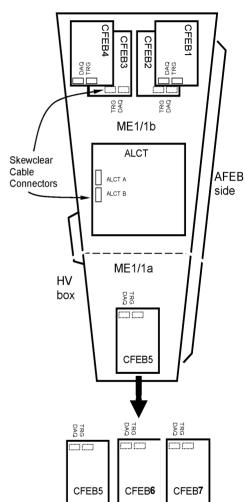
March 9, 2011

ME1/1 Cathode Strip Chambers

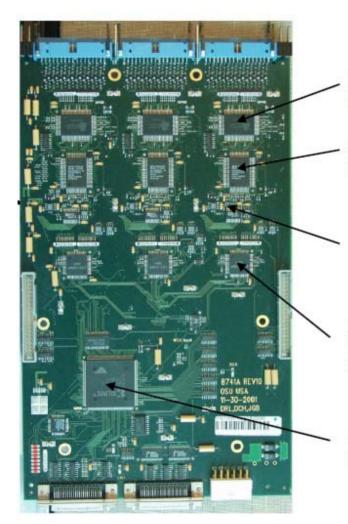

- 72 innermost chambers
- Built by JINR group (Dubna)
- Reside inside the solenoid

ME1/1 Cathode Strip Chambers are divided into two halves:

- ME1/1a (inner) with 48 strips, covering region 2.1 < I η I < 2.4
- ME1/1b (outer) with 64 strips, covering region 1.6 < I η I < 2.1


Strip Ganging in ME1/1a

48 strips of ME1/1a are ganged 3:1 into 16 readout channels:


1+17+33 strips into the 1st channel 2+18+34 strips into the 2nd channel etc This feature leads to triple ambiguity (ghost segments) and compromises trigger efficiency at high rates

Solution: use of 3 CFEB boards instead of one for ME1/1a

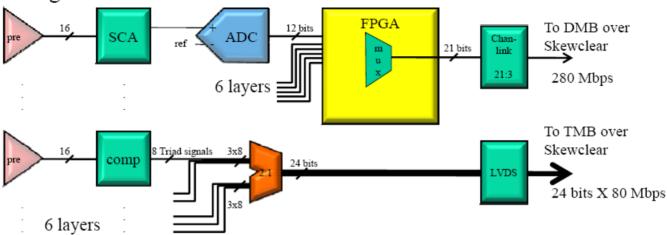
Present Cathode Front-End Board

BUCKEYE (ASIC) - amplifies and shapes input pulse

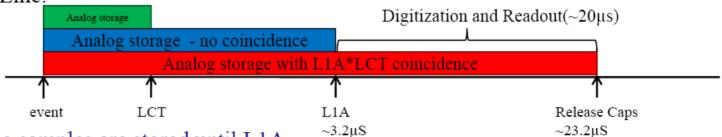
SCA (ASIC) - analog storage for 20 MHz sampled input pulse

ADC - events with LVL1ACC digitized and sent to DAQ Motherboard (25 nsec/word)

Comparator ASIC - generates trigger hit primitives from shaped pulse


Controller FPGA - controls SCA storage and digitization

- 4..5 CFEBs per chamber
- 6 planes x 16 strips =96 strips per CFEB
- 96 switch capacitors per channel, or
 96 x 50 ns = 4.8 us



Present CFEB

Basic Block Diagram:

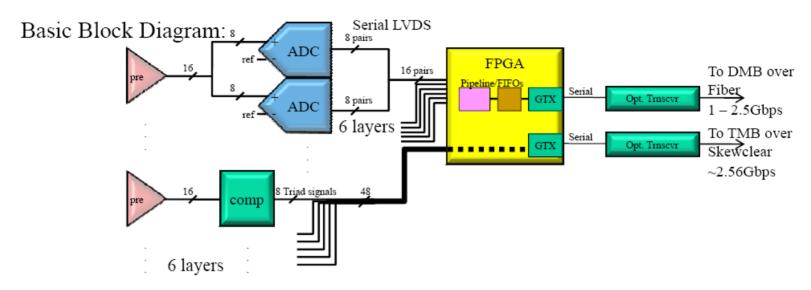
Analog samples are stored until L1A.

(B. Bylsma)

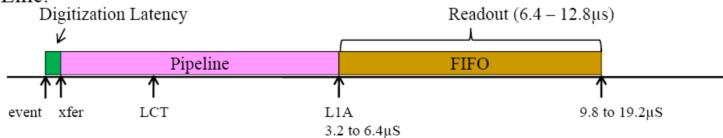
Then ADC must digitize 8X16 samples one at a time.

Limited number of capacitors and single channel ADC impose constraints on LCT and L1A latencies.

CFEB Limitations

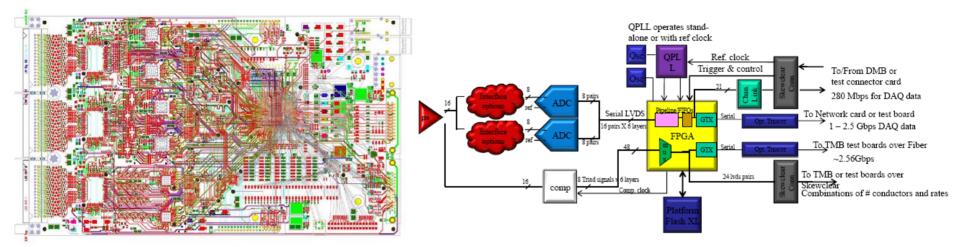

- Estimated LCT rate for ME1/1 chambers at 10³⁴ cm⁻²s⁻¹ luminosity is ~70 kHz and, assuming linear rate increase, may reach 700 kHz at SLHC
- Probability of Switch Capacitor Array (SCA) buffer saturation at 700 kHz is estimated to be ~9%

Solution:


Replace the current "analog" CFEB with SCA and 16:1 multiplexing ADC by "digital" design with flash ADC for each channel and digital pipeline storage

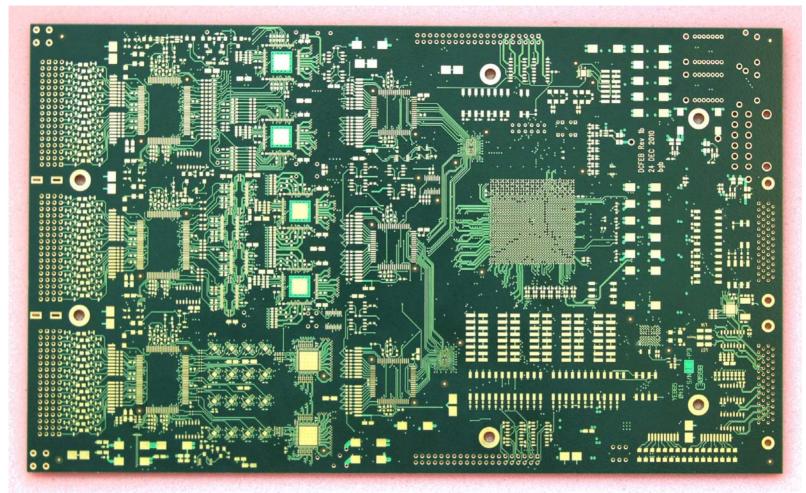
New DCFEB

No Dead Time.


All 96 channels continuously digitized (no multiplexing),

Stored and read out on L1A

(B. Bylsma)

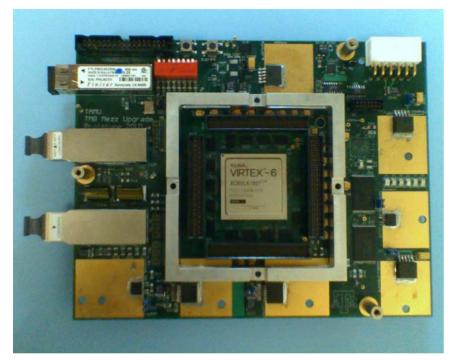

DCFEB Prototype

- Same size as old CFEB board
- Same input connections and 6 BUCKEYE amplifier-shaper ASICs
- 12 Texas Instruments ADS5281 ADC (8-channel, 12-bit, 50 MSPS, serial LVDS output)
- 4 options for preamp/ADC interface to evaluate
- 2 legacy skewclear connectors compatible with old TMB and DMB
- 3.2Gbps optical links to new TMB and new DMB
- Xilinx XC6VLX130T-FFG1156 FPGA (~\$1,200)
- 20-layer PCB

DCFEB Status

• Two boards are being assembled, expected delivery in mid March

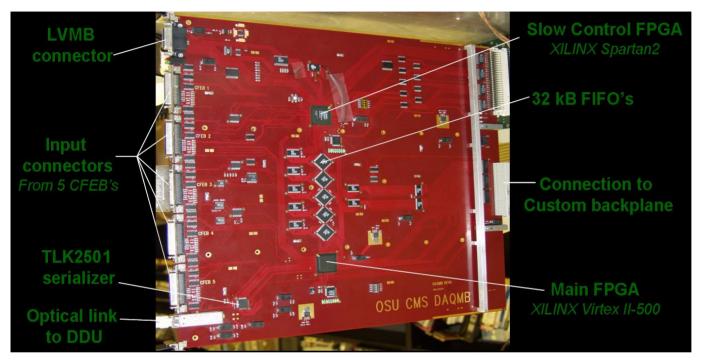
Trigger Motherboard



- Reconstructs the cathode trigger stubs (CLCT) and matches them with the anode ones (ALCT)
- Transmits up to two combined LCT to the Muon Port Card via the custom backplane
- Production TMB2005 is based on Xilinx XC2V4000 FPGA which is almost full; no room for further improvement
- Need to implement more complex algorithms to increase trigger stub finding efficiency for high eta 2.1 < I η I < 2.4 with unganged ME1/1a
- Compatibility with seven new DCFEBs which provide comparator outputs for the CLCT processor

Solution: Replace the FPGA mezzanine

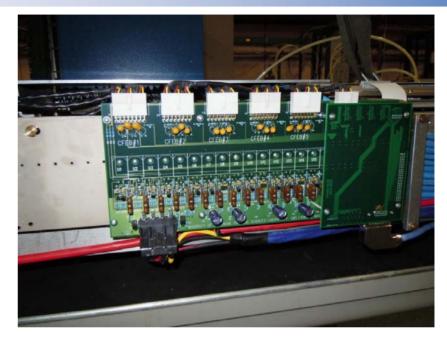
TMB Mezzanine Status



- XC6LVX195T-2FFG1156 (x5 more room than the XC2V4000)
- XCF128X and two XCF32 PROMs
- SNAP12 transmitter and receiver
 - 7 receivers for DCFEB optical links
 - embedded MGT links
- SFP optical transceiver

- Two mezzanine boards have been assembled in January
- Successfully passed initial tests (power, FPGA/PROM, optical links)
- UCLA group has been working on the current TMB firmware project targeted to new Virtex-6 FPGA

DAQ Motherboard



- Replace 5 copper cables to CFEB with 7 optical links to DCFEB
- Developing radiation tolerant FF-EMU ASIC (IBM CMOS 130 nm) for the integrated distribution of TTC signals and for the data readout
- Implement all FIFO buffers inside the Virtex-6 FPGA
- Custom backplane connections remain unchanged

LVDB and **LVMB** boards

- LVDB board distributes LV power to on-chamber electronics
- LVMB mezzanine monitors voltages and currents and transmits them to the DMB
- Both boards need to be redesigned for the ME1/1 upgrade (7 DCFEBs, additional temperature sensors)
- Dubna group took responsibility for the LVDB

Scope and Responsibilities

- DCFEB: 72 chambers x 7 boards = 504 boards (OSU)
 504 liberated CFEB boards will be used to populate 72 new
 ME4/2 chambers (under construction)
- DMB: 72 new boards 9Ux400 mm (UCSB, Northeastern University)
- TMB: 72 new FPGA mezzanines (Texas A&M University)
 UCLA provides the initial firmware for Virtex-6
 Minor mechanical modification to TMB front panel
- LVDB: 72 new boards (JINR Dubna, NCPHEP Minsk)
- LVMB: 72 new mezzanines
- Mechanical integration: JINR
- Engineering coordination: Rice University

Conclusion and Plans

- 1st prototype of the TMB mezzanine has been built; tests in progress
 - production board will be simpler
- 1st prototype of the DCFEB will be assembled in mid March
 - Expect to make a component choice and proceed to preproduction prototype in summer 2011
 - Preproduction prototype will be simpler and cheaper
- DMB schematic is expected to be ready in summer and first prototype in the fall of 2011
- LVDB schematic design in progress, the prototype is expected by summer 2011
- Irradiation tests: TAMU cyclotron, April-May 2011
- Integration tests electronics + chamber : start late 2011 at CERN (b.904)
- Production prototypes: 1st half of 2012
- Mass production and testing: fall 2012 early 2013
- Ready for installation at CMS: by summer 2013

Backup Slides

ME1/1 Effective SCA Buffer Occupancy at SLHC (Stan Durkin, OSU)

- At SLHC: use same L1 accept rate assuming rates go up linearly. Maximum LCT rate is 700 kHz (ME1/1),
- L1-LCT match rate is 5.25 kHz.
- Average number of LCTs during 5.2 ms (=6ms-0.8ms) holding time for 2-blocks: h=5.2x10-6x700x103=3.64
- Average number of L1-LCT matches during 26 ms digitization time: r=26x10-6x5.25x103=0.1365
- Probability of overuse of SCA: 0.09 !!!!!! !!!

n	Free	Used	P(η,n)	Q (ρ,n)
0	12	0	0.026	0.86
1	10	2	0.095	0.12
2	8	4	0.174	1.60E-02
3	6	6	0.211	2.10E-03
4	4	8	0.192	3.00E-04
5	2	10	1.40E-01	4.10E-05
6	0	12	8.50E-02	5.60E-06

Backup Slides

FF-LYNX Protocol (Guido Magazzu, INFN/UCSB)

FF-LYNX: protocol and interfaces for the control and readout of future Silicon detectors

A. Amendola,^a G. Bianchi,^{a,b} R. Castaldi,^c L. Fanucci,^a J. Incandela,^b G. Magazzù,^{b,c,1} M. Minuti,^c R. Rossin,^b S. Saponara,^a C. Tongiani^{a,b} and P.G. Verdini^c

Largo B. Pontecorvo 3, 56018 Pisa, Italy

E-mail: Guido.Magazzu@pi.infn.it

Journal of Instrumentation, Volume 5, June 2010

- Two separate Time Division Multiplexed (TDM) channels for triggers, frame headers and synchronization patterns (THS channel) and frame payload (FRM channel)
- Three speed options: 160Mbps, 320Mbps, 640Mbps

^aUniversità di Pisa, Dipartimento di Ingegneria dell'Informazione (DII-EIT), Via G. Caruso 16, 56122 Pisa, Italy

bUniversity of California at Santa Barbara (UCSB), Department of Physics, 5113 Broida Hall, CA 93106 Santa Barbara, U.S.A.

^cINFN, Sezione di Pisa,