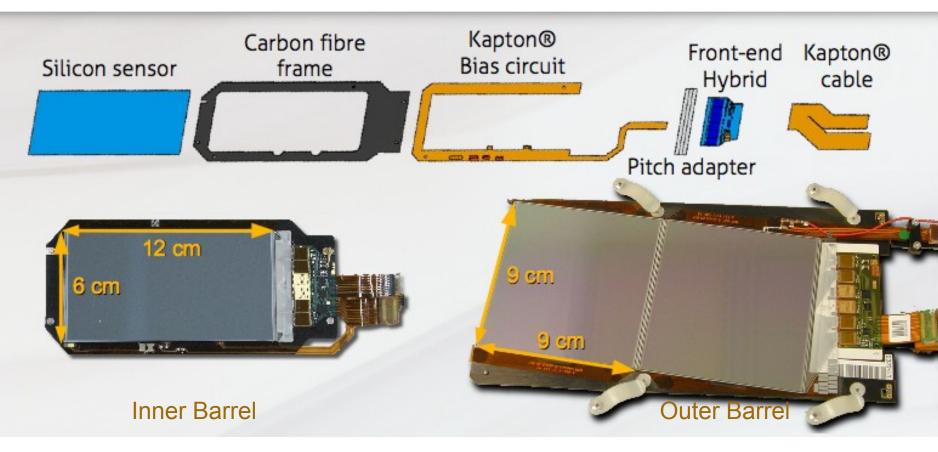
MODULE DESIGN


Some thoughts towards possible module (and system) designs for the CMS Tracker Upgrade

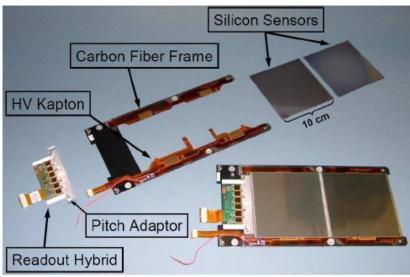
1

Outline

- Modules in the present tracker
 Integration in the system
- New requirements for HL-LHC
 Higher granularity
 Trigger
- Implications for module design
 Examples of concepts considered so far
 Outlook for developments needed

Barrel modules

Wedge-shaped endcap modules follow the same concept

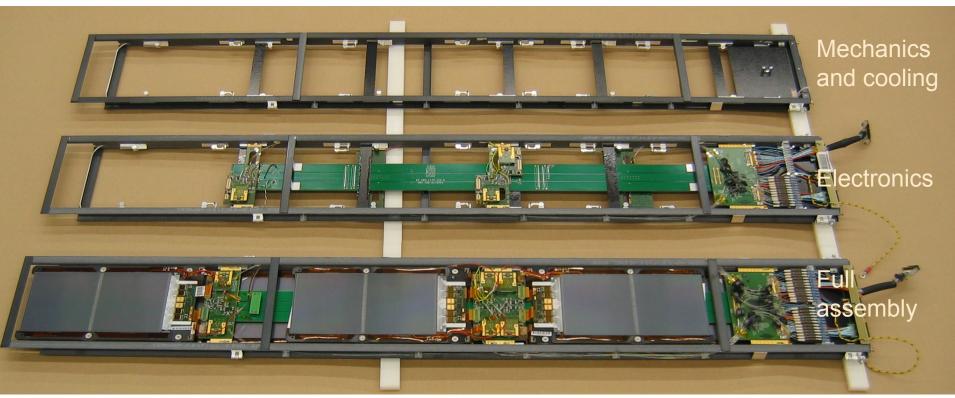

Modules – main features

- Strip length 10÷20 cm; pitch 80÷180 µm
- Connections through wirebonds
 - ⊙ Sensor to pitch adapter
 - ⊙ Pitch adapter to readout chip
 - Sensor to sensor (where applicable)
- > 9.3 M channels → 24 M bonds!

Outer Downlaws date				Mass (g) 49.99	Int length 0.22%	Rad length 0.95%
Outer Barrel module						
Silicon sensors		a a fair a fa	21.22	42%	39%	51%
Hybrid	120135		1.95	4%	3%	6%
	Copper	1.29				
	Rest	0.66	1.44			
Pitch adapter		E. R.C.	2.77	6%	5%	7%
Ceramic support			4.27	9%	9%	7%
CF frame			12.91	26%	29%	16%
	Plate	5.16	S. S. K			
	Legs	7.74				
Cooling (Alu + SS)			0.94	2%	2%	2%
HV			1.08	2%	2%	4%
Encapsulant			2.47	5%	5%	4%
Rest			2.38	5%	5%	4%

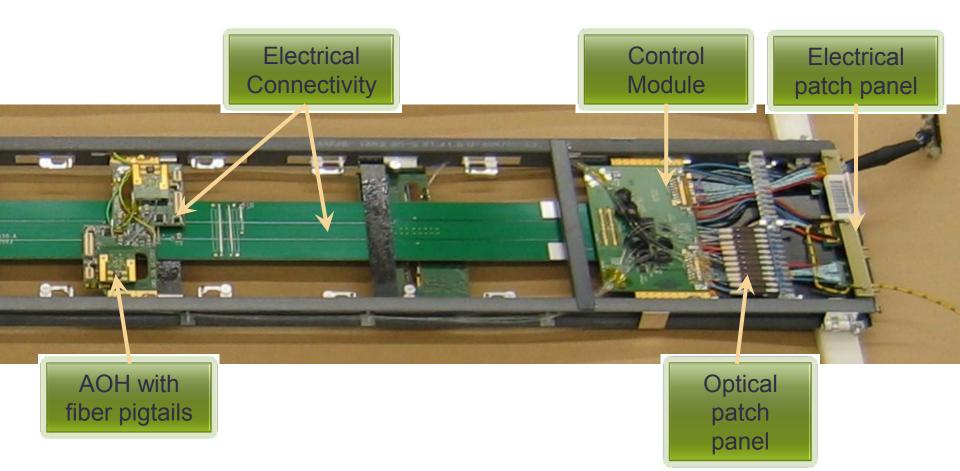
★ 500 µm thick sensors

- ★ Largest sensor surface
 - Ratio silicon/rest less favourable for other flavours

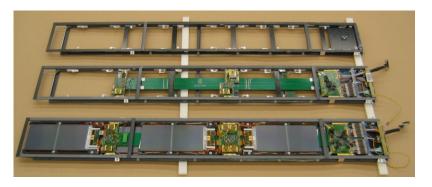


D. Abbaneo - ACES 2011

Modules in sub-assemblies


> Example: Outer Barrel

 Implementation details different in other subsystems, but similar concept


D. Abbaneo - ACES 2011

Electronics: closer look

Weight analysis

Outer I	Mass (g) 804.6			
Modules			299.9	37%
管理规是法	Sensors	127.30	1.5	
	Electronics	89.58		
	Mech & cool	83.06		
Cooling		ERCORE.	94.3	12%
	Cooling blocks	68.83	72.00	
	Cooling pipes	12.73		1
	Cooling fluid	12.74	1.00	S IN CAR
Electronics			277.4	34%
	Cu	60.88	1.5	
	FR4	133.04		
	Insulators	12.98		
	Optical	30.78	A Love	Serie and
	Other	39.70	775	
Mechanics	CELE TRACTION	des	132.5	16%
	Side profiles	114.62	12012	
	End-ribs	12.89		
	Spheres	5.00	1.5	

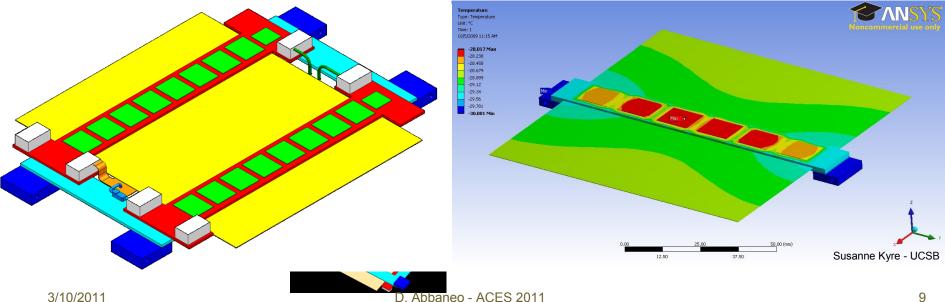
Electrical connectivity is the dominant contribution

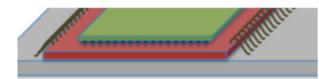
 N.B. these are 500 µm thick sensors
 If we had to redo the same TK, we should invest in connectivity

 Better power distribution is a key

Upgrade: higher granularity

★ At least ×5 increase in granularity: implications

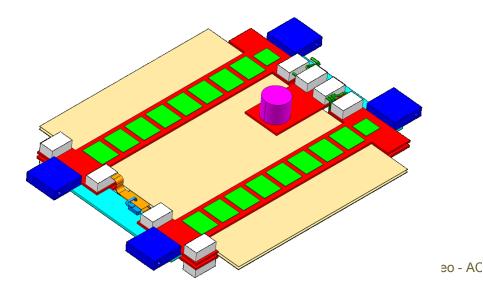

- Strip length goes from 10÷20 cm to 2.5÷5 cm
- > Pitch ≤ present Tracker (≈ 90µm)
- Channel count ≈ 50 million
 O Would imply ≈ 100 M wirebonds using "old" design
 A factor of 2 reduction is obviously welcome
- Density of pitch adapters ×5
 - Mass of pitch adapters would become comparable to the silicon sensors!!

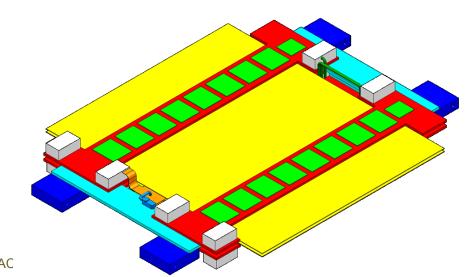

★ Conclusion:

More advanced interconnections are mandatory!

A new module

- "High density" hybrid integrates pitch adapter • Pitch adapter integrated in sensor pursued as backup
- Hybrid wirebonded to sensor
- Chips bump-bonded (C4) on hybrid • Saves 50% of the wirebonds
- No experience with these types of substrates!
 - ⊙ Stringent requirements e.g. on CTE, rad hardness, reliability...
- Cooling seems OK, but possibly issues with deformations in cold

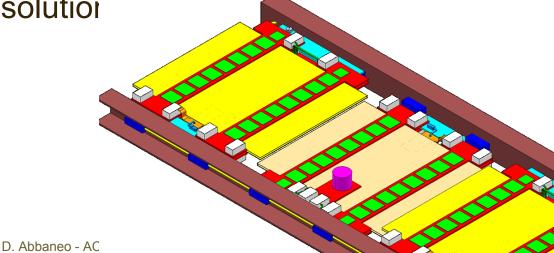

The modules in the system


No large PCBs, all components on hybrids or "control module"

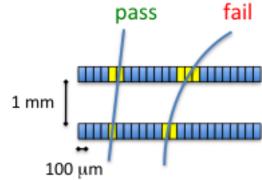
- Power/signals running on wires/twps housed in the mechanics
- Corresponding study started for Endcap geometry
 Looks very promising

Stereo modules

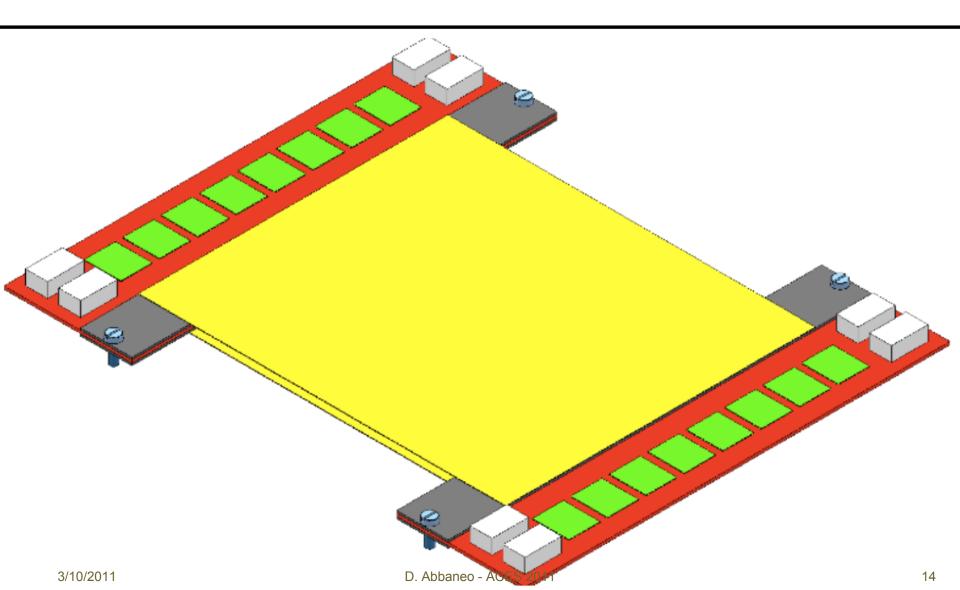
- Example with 2.5 cm strip length
- > Thermal/deformation analysis to be started
 - ⊙ More channels/power density
 - ★ Probably cooling still OK
 - ⊙ More symmetric assembly
 - ★ Possibly solves problem of deformation



Stereo module assembly


- Power converter relocated
- More channels → 5 (or 6) GBTs / rod
 If readout based on CBC
- Serious integration problem

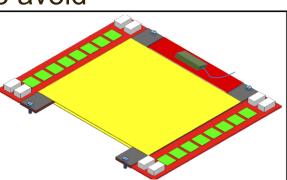
Optical transmitter too bulkyNo straightforward solution



Trigger modules

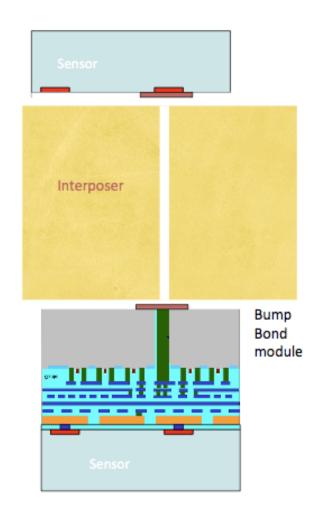
- Select locally hits from particle above a P_T threshold ("P_T module")
 - ⊙ Threshold 1 to a few GeV → data reduction of one order of magnitude or more
- Correlate signals in two closely-spaced sensors
- > Two families of sensors:
 - ⊙ Strip based
 - ★ Outer layers
 - ★ No information in the z view @ L1
 - Pixellated
 - ★ Suitable for inner layers
 - ★ Some precision also in the z coordinate

Trigger module for outer layers

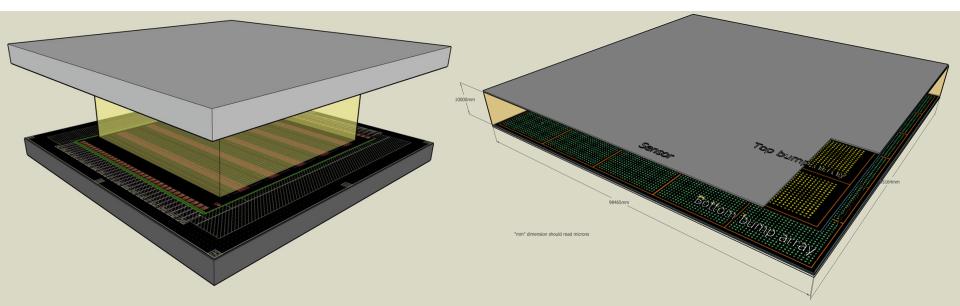


Trigger module for outer layers: features

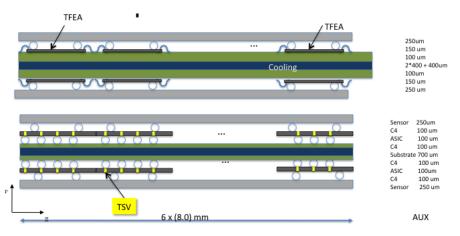
- > ≈ 5 cm long strips, ≈ 90 μ m pitch
- Wirebonds from the sensors to the hybrid on the two sides

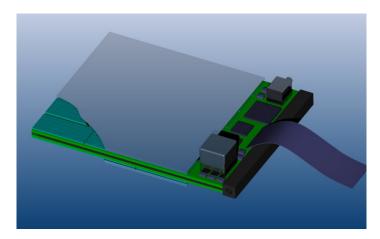

⊙ 2048 channels on each hybrid!!

- Chips bump-bonded onto the hybrid
- Neat and lightweight design
- Possibly need 1 GBT / module
 - \odot Depends on the choice for the readout
 - Ideally to be integrated in the module itself, to avoid cumbersome connectivity
 - ★ Rather impossible with current dimensions
 - ★ No solution at present


Pixellated P_T modules based on 3d electronics

- A single chip connected to top and bottom sensors
- Analogue paths through interposer from top sensor, segmented in ~ cm long strips
- Bottom sensor provides z precision (~ mm long pixels)
- Electronics and connectivity (interposer) are technological challenges (yield, robustness, mass, large-size module)


Development in steps


▷ Demonstrator 5×5 → module 100×100?

A long way to go for large surface, and volume production

Pixellated P_T modules – other approach

- Interconnection with or w/out TSVs, symmetric assembly
- Low-distance digital lines from top to bottom (through edge of substrate)
- Auxiliary electronics integrated in module
 - ★ But the sketch is an "artistic view", not a realistic model!

Based on application of existing (advanced) technologies

- ⊙ Concept developed in cooperation with two packaging companies
 - ★ The substrate is a commercial product
 - ★ Interconnection techniques used in commercial devices
- Realistic (?) goal 48x48 mm²

Interconnection is nevertheless the challenge

 Large assembly combined with our requirements (yield, low T operation, reliability, rad hardness....) is exotic

Substantial penalty in mass and power

Conclusions and outlook

- Studies of a few module designs started
 - ⊙ Several ideas considered...
 - ★ ... and possibly more to come!

> Hybrid technology is a key

- Start exploring technological options in parallel with design of active components
 - ★ Stringent requirements on CTE, rad hardness, reliability
- \odot Interconnection technology is even more crucial for pixellated P_{T} modules
- Integration of optical links is an issue
 - ⊙ Notably for trigger modules
 - A much smaller packaging for the optical transmitter seems mandatory