Laminate Based System in Package (SiP) Utilizing High Density Interconnect (HDI) Substrates in High Reliability Applications

Ron Nowak
Senior Manager,
Application Engineering and Design Services

10 March 2011
What is SiP?....An Integrated Solution

- System in Package (SiP) delivers 10-20X reductions from current designs
- Up to 90% weight reductions
- Significantly lower power and improved electrical performance
- Hi-Reliability, Hi-Quality, Hi-Performance
- Remove layers of interconnect
- Addresses growing demand in:
 - Unmanned systems
 - Radar
 - Space satellites
 - Electronic Warfare
 - Medical Applications
 - Research Applications
- The magic dust:
 - Bare die
 - HDI substrates

620mm² PWB reduced to 30mm²
Typically multiple bare die and SMT components on a HDI microelectronics substrate:

- Large and Small Bare Die placement & attach
 - Flip chip die connections
 - Wirebond die connection
 - Dual sided attach
 - Component substitution

- SMT placement & attach
 - Down to 0201’s, 01005’s
 - CSP’s, SOIC’s, PLCC’s, SOJ’s

- Connections to next level assembly
 - SMT pinned connectors
 - Ball Grid Array

- High Density Interconnect Substrates: the secret sauce!
 - Laser drilled through and microvias
 - 25 micron trace width and space
 - Thin, low loss, low dielectric constant materials
System in Package Overview

- **Package Size**
 - Standard JEDEC 13.0mm to 55.0mm
 - Custom size and shape SiPs

- **Assembly to Organic Substrates**
 - FR4 and BT epoxy
 - Particle filled epoxy build-up
 - PTFE dielectric
 - Kapton flex
 - Polyimide
 - LCP

- **Common Product Parametrics**
 - Large MCM/SiP packages
 - Hybrid/double-sided assembly
 - Single chip module and device packages

- **Test**
 - Shorts-opens
 - JTAG/boundary scan
 - Full functional test
System-in-Package Conversion

➢ Where we begin:
 – Technical contact at the customer
 – Si design: Bare die availability
 – Preliminary BOM Analysis
 • Input
 – Bill of Materials & Approved Vendor List
 • Output
 – Smaller package & bare die recommendations
 – Preliminary Area Study
 • Input
 – Board design file & Electrical restraints
 • Output
 – initial conversion of PCB to substrate
 » cross section, dielectric and size estimates
 – Initial assembly layout
 – Substrate design and assembly layout
 • Electrical, thermal and mechanical analysis
Design Tools and Modeling
Overview of Package Behaviors

- **Ceramic**
 - Finite BGA fatigue life
 - Very little warpage
 - No internal packaging issues

- **Direct chip attach to organic**
 - Control of warpage, adhesive strength
 - Smaller chips
 - Coverplate to balance stresses

- **Build-up technology**
 - Use of somewhat compliant outer layer
 - Outer layer electricals less desirable
 - Outer layer strains substantial
Laminate vs. Ceramic Reliability Comparisons

45mm body size

<table>
<thead>
<tr>
<th>Product</th>
<th>Material</th>
<th>Typical Substrate Thickness</th>
<th>Dielectric Constant</th>
<th>Loss Tangent</th>
<th>Component Level Reliability -55 to 125°C</th>
<th>Board Level Reliability 0-100°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTCC (solder columns)</td>
<td>Glass Ceramic 11</td>
<td>1.0 mm</td>
<td>8.1</td>
<td>.0034</td>
<td>1000 cycles</td>
<td>2,200 cycles to 1<sup>st</sup> fail</td>
</tr>
<tr>
<td>HyperBGA<sup>®</sup></td>
<td>PTFE</td>
<td>0.47 mm</td>
<td>2.7</td>
<td>.003 (49% silica filled)</td>
<td>1000 cycles</td>
<td>10,000 cycles to no</td>
</tr>
<tr>
<td>CoreEZ<sup>™</sup></td>
<td>Epoxy/P-Aramid Fiber Core and particle filled Epoxy build up</td>
<td>0.526 mm (8 layer)</td>
<td>3.5</td>
<td>.022</td>
<td>1000 cycles</td>
<td>5,000 cycles to 1<sup>st</sup> fail</td>
</tr>
</tbody>
</table>

Plastic solutions offer:
- High electrical performance
- High reliability performance
- Weight reduction
- Smaller x, y, z form factor
PTFE Substrate Chip Joining

Measured flatness of 42.5mm laminate + stiffener subassembly example
Viewed from BGA side: Moiré topographic fringe contours at 8.33 microns / fringe

Room temperature, 20C
Reflow temperature, 183C

14.7 mm size chip bump region (in red) remained flat to within 17 microns
Typical PWB to SiP Prototype Cycle

- Critical Design Inputs
- BOM Analysis
- BOM Substitution Recommendations
- SiP Physical Layout
- Preliminary Design Review
- SiP Physical Layout Optimization
- Critical Design Review
- Substrate Fab
- SiP Assembly & Test

29 weeks from design inputs to ship is common, assuming component availability.
HDI Microelectronics Packaging Menu

Microelectronics Packaging

- **Epoxy Glass Substrate**
 - Cost performance
 - FR4, BT, Polyimide
 - Mechanically drilled holes
 - 75 micron trace
 - 75 micron spaces
 - Flip chip, Wirebond, SMT
 - Radiation Hard Capable

- **CoreEZ®**

- **Thin Core Build Up**
 - Cost performance
 - Particle filled epoxy
 - Thin core (coreless)
 - Laser drilled core
 - Laser drilled build up
 - 25 micron trace
 - 25 micron space
 - Buried resistors
 - Flip chip, Wirebond, SMT
 - Radiation Hard Capable

- **HyperBGA®**

- **PTFE Substrate**
 - High Bandwidth/RF
 - Particle filled material
 - Coreless
 - Laser Drilled Vias
 - Fusion Bonding
 - 25 micron trace
 - 33 micron space
 - Flip chip, Wirebond, SMT
 - Radiation Tolerant
Packaging Attributes applied to SiP conversions

Substrate features and advanced IC Assembly techniques enable bare die implementation

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Standard PCB</th>
<th>HDI Substrate</th>
<th>Shrink opportunity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Through via</td>
<td>Mechanical</td>
<td>Laser</td>
<td></td>
</tr>
<tr>
<td>Through via dia.</td>
<td>200 microns</td>
<td>50 microns</td>
<td>4X</td>
</tr>
<tr>
<td>Through via capture pad diameter</td>
<td>400 microns</td>
<td>100 microns</td>
<td>4X</td>
</tr>
<tr>
<td>Line Width</td>
<td>75 microns</td>
<td>25 microns</td>
<td>3X</td>
</tr>
<tr>
<td>Space Width</td>
<td>75 microns</td>
<td>25 microns</td>
<td>3X</td>
</tr>
<tr>
<td>Semiconductors</td>
<td>Packaged</td>
<td>Bare die or small package</td>
<td>4X to 10X</td>
</tr>
</tbody>
</table>

Flip Chip Bump

3-4-3 CoreEZ®
2011 Product Attribute Comparisons

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Standard (Epoxy Glass or Polyimide)</th>
<th>HDI: Dense (Particle Filled Epoxy)</th>
<th>HDI: LCP (liquid crystal polymer)</th>
<th>HDI: PTFE (PTFE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line width</td>
<td>75 microns</td>
<td>25 microns</td>
<td>37.5 microns</td>
<td>25 microns</td>
</tr>
<tr>
<td>Line space</td>
<td>75 microns</td>
<td>25 microns</td>
<td>37.5 microns</td>
<td>33 microns</td>
</tr>
<tr>
<td>Via type</td>
<td>mechanical</td>
<td>laser</td>
<td>Laser</td>
<td>laser</td>
</tr>
<tr>
<td>Via diameter</td>
<td>200 microns</td>
<td>50 microns</td>
<td>50 microns</td>
<td>50 microns</td>
</tr>
<tr>
<td>Stacked vias</td>
<td>Build up only</td>
<td>Build up only</td>
<td>In 2010</td>
<td>In 2010</td>
</tr>
<tr>
<td>Capture pad diameter</td>
<td>400 microns</td>
<td>100 microns</td>
<td>110 microns</td>
<td>110 microns</td>
</tr>
<tr>
<td>Surface finish</td>
<td>E-less Ni / I Au, ENEPIG</td>
<td>Same</td>
<td>Same</td>
<td>Same</td>
</tr>
<tr>
<td>Solder mask</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>no</td>
</tr>
<tr>
<td>Thickness</td>
<td><1mm</td>
<td>0.4 - .7mm</td>
<td>0.5mm</td>
<td>0.5mm</td>
</tr>
</tbody>
</table>
| Layers | 10 | 12 | 4, 6 in 1
| | St article | 11 |
2011 Product Attribute Comparisons

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Standard</th>
<th>HDI: Dense BU (Particle Filled Epoxy)</th>
<th>HDI: LCP (liquid crystal polymer)</th>
<th>HDI: PTFE (PTFE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCB Attach</td>
<td>Pin Grid, BGA, LGA, Custom</td>
</tr>
<tr>
<td>Die attach</td>
<td>Wirebondable, Flip Chip <14mm, SMT</td>
<td>Wirebondable, Flip Chip <14mm, SMT</td>
<td>Wirebondable, Flip Chip <14mm, SMT</td>
<td>Wirebondable, Flip Chip 14mm, SMT</td>
</tr>
<tr>
<td>Flexible</td>
<td>Rigid Flex</td>
<td>HDI Rigid Flex</td>
<td>Flex</td>
<td>Flex</td>
</tr>
<tr>
<td>Formable</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>no</td>
</tr>
<tr>
<td>Radiation Level</td>
<td>Strategic Rad Hard</td>
<td>Strategic Rad Hard</td>
<td>Strategic Rad Hard</td>
<td>Rad Tolerant</td>
</tr>
<tr>
<td>Embedded Passives</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>FC Component level reliability (-55 to 125°C)</td>
<td>1000 cycles</td>
<td>1000 cycles</td>
<td>1000 cycles</td>
<td>1000 cycles</td>
</tr>
<tr>
<td>FC Board level reliability (0 to 100°C)</td>
<td>2,000 cycles</td>
<td>5,000 cycles</td>
<td>In testing</td>
<td>10,000 cycles</td>
</tr>
<tr>
<td>Composite CTE</td>
<td>19ppm</td>
<td>18ppm</td>
<td>17ppm (X&Y)</td>
<td>12ppm</td>
</tr>
<tr>
<td>Er</td>
<td>4.1</td>
<td>3.7</td>
<td>2.9</td>
<td>2.7</td>
</tr>
<tr>
<td>Loss Tan</td>
<td>.011</td>
<td>.016</td>
<td>.0025</td>
<td>.003</td>
</tr>
</tbody>
</table>
Physical Design content

- Physical Design Implementation
 - Component Placement & Routing
 - Physical & formal verification
 - Signal Integrity (SI) & Crosstalk analysis
 - Static Timing Analysis (STA)
 - Multiple Supply Voltage (MSV)
 - Leakage Current Reduction Techniques
 - Clock & Supply Voltage Gating
 - Power Optimization
 - Design for Test to ensure testability
 - Design for Manufacturability to maximize production yields
Signal and Power Integrity
Potential Work Items and Design Flow

➢ Typical Signal Integrity Workflow (varies by application)
 – Customer defines SI specifications in the form of routing constraints by net such as:
 • Z0 (SE, DP), Skew (Group / reference), Crosstalk / Isolation (dB @ Freq), Rdc, Insertion / Return loss (dB @ Freq), etc.
 – EIT ensures that these specifications are met as follows:
 • Pre-layout Design Guidelines:
 – Define stackup, function by layer, recommended component placement
 – Define trace width (and spacing for DP) for Z0 requirements
 – Translate electrical Skew requirements into physical lengths
 – Define spacing and coupled length limitations for crosstalk control
 – Define trace geometries to meet loss specification
 • Post-layout Verification:
 – Extract parameters from design database using Ansoft toolset
 – HFSS, Q3D, SIWave
HDI Substrate Materials Analysis
Evaluation of Materials Subjected to Various Radiation Levels

- Evaluated PTFE BGA (HyperBGA®) and Thin Core (CoreEZ ®) materials radiation response

 - Radiation Exposure: Co60 Gamma:
 - Control
 - 32, 50, 100, 300, 500, 700, 1000 and 5000 krad TID

 - PTFE Materials evaluated: Rogers 2800, PPE
 - Results: Many applications will be unaffected by radiation
 - PPE has no measurable degradation to 5 Mrad
 - RO2800 shows gradual loss of ductility with exposure

 - Thin Core Build Up Materials Considered: Thermount 55LM, Particle Filled Driclad Epoxy, PSR4000
 - Results: No measurable change of mechanical properties through 5 Mrad
Ductility performance indicates package performance in thermal cycling

- Thin Core Build Up appears to be a good choice for Rad Hard and Strategic apps.
 - Materials show no ductility degradation with radiation level
- PTFE appears to be best suited for Rad Tolerant applications
 - PTFE ductility is higher than all other materials below 300K rad exposure
 - PTFE predictably degrades significantly above 300 Krad exposure levels
HDI Laminate Substrate Technologies
Typical PTFE® 9 Layer Cross Section

- **40 micron thick APPE**
 - outer dielectric
 - $\varepsilon_r = 3.2$

- **35 micron thick PTFE**
 - Dielectric, $\varepsilon_r = 2.7$

- **50 micron thick PTFE**
 - Dielectric, $\varepsilon_r = 2.7$

- **15μ thick Cu**
 - redistribution

- **12μ thick Cu**

- **6μ Cu/38μ Invar/6μ Cu**
 - Ground plane

- **15μ thick Cu**
 - redistribution

- **Non soldermask defined pad**

- **12μ thick Cu**

- **12μ thick Cu**
 - 50μ dia. through via

- **APPE filled**

BGA Pad

Chip

Bump

Underfill

Microvia
Packaging Electrical Comparisons

<table>
<thead>
<tr>
<th>Property</th>
<th>CBGA Alumina</th>
<th>Build-up 3+3</th>
<th>HyperBGA™</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Line width/pitch (um)</td>
<td>90/22 5</td>
<td>50/15 0</td>
<td>38/9 4</td>
<td></td>
</tr>
<tr>
<td>Zo (Ohms)</td>
<td>35-60</td>
<td>45-75</td>
<td>55-64</td>
<td></td>
</tr>
<tr>
<td>Time Delay (ps/mm)</td>
<td>* 11.8</td>
<td>6.5</td>
<td>5.5</td>
<td></td>
</tr>
<tr>
<td>Dielectric constant</td>
<td>* 9.5</td>
<td>3.8</td>
<td>2.7</td>
<td></td>
</tr>
<tr>
<td>Resistance (mOhms/mm)</td>
<td>* 40</td>
<td>150</td>
<td>300</td>
<td>38</td>
</tr>
<tr>
<td>Inductance (nH/mm)</td>
<td>* 0.52</td>
<td>0.38</td>
<td>0.44</td>
<td>0.29</td>
</tr>
<tr>
<td>Capacitance (pF/mm)</td>
<td>* 0.27</td>
<td>0.28</td>
<td>0.24</td>
<td>0.15</td>
</tr>
<tr>
<td>Coupling Coef.</td>
<td>Kc=0.122</td>
<td>0.135</td>
<td>0.32</td>
<td>0.058</td>
</tr>
<tr>
<td></td>
<td>Ki=0.124</td>
<td>0.140</td>
<td>0.31</td>
<td>0.058</td>
</tr>
<tr>
<td>X-Talk (Vne@1V/ns)</td>
<td>4.8</td>
<td>3.6</td>
<td>7.08</td>
<td>0.78</td>
</tr>
<tr>
<td>X-Talk (Vne-sat-mV/V)</td>
<td>203.4</td>
<td>152.5</td>
<td>300</td>
<td>60.3</td>
</tr>
<tr>
<td>V-G Loop Inductance (pH)</td>
<td>30 agr:22</td>
<td>55</td>
<td>6 - 9</td>
<td></td>
</tr>
<tr>
<td>Loss Factor</td>
<td>0.0005</td>
<td>0.03</td>
<td>0.003</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Alumina, HyperBga F=10GHz Build-up F=1MHz</td>
</tr>
</tbody>
</table>

Notes: * measured values; Loop inductance: Entire package, all C4 pads and BGA’s commoned. The above electrical characteristics are typical of each product. Variations of these parameters can be achieved for a specific design.
PTFE® Electrical Performance

HyperBGA High Speed Data Rate
Time Domain Analysis
Differential Mode Eye Diagram

- Package Deterministic Jitter
 - < 1ps p-p
PTFE Module Reliability Performance

<table>
<thead>
<tr>
<th>Test</th>
<th>Format</th>
<th>Test Duration</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preconditioning - JEDEC Level 3</td>
<td>Component</td>
<td>96 hours</td>
<td>N/A</td>
</tr>
<tr>
<td>Board Level Thermal Cycle (0 / 100°C)</td>
<td>On board w/heat sink*</td>
<td>3600 cycles</td>
<td>Pass</td>
</tr>
<tr>
<td>Board Level Thermal Cycle (0 / 100°C)</td>
<td>On board w/lid</td>
<td>3600 cycles</td>
<td>10K Pass</td>
</tr>
<tr>
<td>Power Cycling (25 / 125°C)</td>
<td>On board</td>
<td>3600 cycles</td>
<td>Pass</td>
</tr>
<tr>
<td>DeepThermal Cycling (-55 / +125°C)</td>
<td>Component</td>
<td>1000 cycles</td>
<td>Pass</td>
</tr>
<tr>
<td>Wet Thermal Shock (-40 / +125°C)</td>
<td>Component</td>
<td>100 cycles</td>
<td>Pass</td>
</tr>
<tr>
<td>TH & B (85°C / 85%RH / 3.7V)</td>
<td>On board</td>
<td>1000 hours</td>
<td>Pass</td>
</tr>
<tr>
<td>HAST (110°C / 85%RH / 3.7V)</td>
<td>On board</td>
<td>264 hours</td>
<td>Pass</td>
</tr>
<tr>
<td>Pressure Pot (121°C / 100%RH / 2atm)</td>
<td>Component</td>
<td>96 hours</td>
<td>Pass</td>
</tr>
<tr>
<td>High Temp. Storage (150°C)</td>
<td>Component</td>
<td>1000 hours</td>
<td>Pass</td>
</tr>
<tr>
<td>Low Temp. Storage (-65°C)</td>
<td>Component</td>
<td>1000 hours</td>
<td>Pass</td>
</tr>
<tr>
<td>Shock/Vibration JEDEC</td>
<td>Component</td>
<td>various</td>
<td>Pass</td>
</tr>
</tbody>
</table>

Component w/ adhesively attached 200 gm Heat Sink on 9x10 inch card
HDI - CoreEZ® Overview
Current Product Offering

Current Description

- 4 layer, thin core (200 μm)
- 50 μm UV laser drilled vias
- 199 μm core pitch
- Up to 4 buildup layers
- Typical Cross sections: 1-4-1, 2-4-2, 3-4-3, 4-4-4
 - Stacked buildup vias
 - 35 & 50 μm buildup thickness
 - 150 μm die pad pitch capable
Typical CoreEZ® 10 Layer Cross-Section

- 3-4-3 Stack up (10 copper layers)
- Substrate thickness 0.7 mm
8 Layer X-Section Comparison

CoreEZ® 2-4-2

Standard Build-up 3-2-3

Photographs are at same magnification

- Both packages use 50um blind vias
- CoreEZ® core vias are 4x smaller
- Enhanced high speed electrical performance
HDI With High Core Via Density

- Dense Package Interconnect
 - Dense Core Via Pitch
- Dual Side Component Mounting
- Fine Line Width and Spacing
- Enhanced Z-axis connectivity

Thin Core, SiP 50 um via
Standard Build-Up 500 um via

~9X Core Via Density
CoreEZ™ is available as a 1-4-1, 2-4-2, 3-4-3 or 4-4-4 cross sections

- 1-4-1 = 2 full stripline signal planes, 4 pwr/gnd
- 2-4-2 = 4 dual stripline signal planes, 4 pwr/gnd
- 3-4-3 = 4 full stripline signal planes, 6 power/gnd
- 4-4-4 = 4 full stripline signal planes, 8 pwr/gnd
Embedded Passives in CoreEZ®

- Resistors
 - Thin film resistor material
 - Ticer TCR®
 - 10 - 250 ohms per square
 - Resistor values from 5 ohm to 50 Kohm
 - Resistor tolerances from 2 – 20%
 - Laser trimming 2 – 5%
 - Typical resistor areas
 - 0.2 – 15 mm²
 - Block or Serpentine designs

Eight layer core 285 nF / in²
High Speed SERDES in CoreEZ® Simulation at 12.5 Gbps

- Similar electrical performance as PTFE
 - Within 10% of PTFE jitter performance
Liquid Crystal Polymer (LCP)
Why LCP?

- Is “near” hermetic
 - Low moisture absorption: 0.04%
- Halogen Free (lead free assembly being evaluated)
- Similar in electrical performance to PTFE
 - Low Loss
 - $D_k = 2.9$
 - $D_f = 0.0025$
- Very Lightweight
 - 1.4gm/cm3
- Thermoplastic
- Thin and thick layer combinations in cross sections
 - 25um, 50 um and 100 um thickness
- Capable of Radiation Hardened applications

- Rogers ULTRALAM 3850, 3908
- Nippon Steel Espanex L
4-Layer LCP x-sections:

- 50 micron laser thru vias
- 50 micron buried vias
- 50 micron thick LCP
- 100 micron thick LCP
- 37.5 micron LW & Space
- Staggered Blind Vias
- Rogers Ultralam 3850, 3908
Integrated Circuit Assembly Needs
First level Assembly Overview

Electronic packaging development, fabrication and advanced assembly of complex flip chip and wire bond packages

Key differentiators:
- Flip Chip, Wirebonding and SMT on one package
- BGA balling
- Lead-free assembly
- 01005 component placement and assembly
- Alternative pad finishes
- Teradyne Ultra FLEX
 VLSI platform functional testing
- Leading edge process development
Wire Bond Expertise......

- Die-up and cavity
- Ball bonding 25 micron diameter Au wire to 125 micron pitch
- Pitches down to 57µm on 700+ wire package
- Production qualified for military applications
- Die attach: sizes to 16mm square
- Ribbon bonding packages and cards to 12”
- Al ribbon bonding available
- Coplanarity measurements
- Damming and glob top
Flip Chip Assembly Needs

- Flip Chip Expertise
 - SiGe, Si, GaAs die attach
 - Hi melt, eutectic, Sn cap C4, Pb-free
 - Low alpha Sn/Pb solder
 - High I/O Flip Chip join down to 150µm pitch
 - Die sizes placed to 25mm x 26mm
 - Flux chemistries/dispensing
 - Various low & high modulus underfills
 - BGA attach down to 0.5mm pitch (eutectic, Pb-free)
 - PGA attach
 - Thermal adhesive
 - Heat spreader, heat sink & lid attach
 - 100µm pitch solder dispense
 - Solder volume measurements
 - CSAM acoustic imaging inspection
 - X-ray inspection
 - Part labeling/marking: traceability
Assembly Engineering Support

Support Operations

- Pre/post assembly coplanarity measurement
- Acoustic microscopy for interfacial inspection
- Real time X-ray for process monitors
- Ionic cleanliness measurements
- Wire pull and ball shear
- Solder repair/rework
- Cross section support failure analysis
- Traceability to the component level
- Fixturing and process development

AIR-VAC Hot Air Rework Tool

- Can rework leaded, lead free, and high melt BGA’s, Micro BGA’s, and flip chip die.
System in Package Application Examples
Extreme SiP Miniturization example

Original PCB 620 mm²

- Package Size
 - 30 mm diameter, 391 total components
- 39 different part numbers, 231 components on 2 surfaces
- 5 Bare Die
 - Flip Chip FPGA, 15.95mm x 10.23mm, 2,440 I/O
 - Flip Chip DSP, 4.68mm x 5.134mm, 225 um pitch, 261 I/O
 - Flip Chip Supply monitor, pitch = 114 um, 16 I/O
 - Flip Chip DRAM, pitch = 121 um, 86 i/o
 - Flip Chip Flash memory, pitch = 116 um, 77 I/O
- 178 SMT Capacitors, 14 SMT resistors
- 152 buried resistors imbedded in substrate
- 1 SMT circular connector
- > 100 produced

SiP CoreEZ™ 30 mm²
Intravascular Ultrasound Catheter Sensor Package

- Flip Chip Ultrasound Transducer for Catheter sensor assembly rolled to 1.175mm diameter
- 5 Flip Chip ASIC, .1mm thick, 31 I/O, 2.5mm x .5mm
 - 22 micron flip chip bumps on 70 micron die pad pitch
- 1 PZT crystal
- 12.5mm by 6.5 mm single layer flex circuit
 - 14 micron wide lines and space copper circuitry
 - 12.5 thick polyimide dielectric
- Prototype to production
 - Over 320,000 modules shipped

Single layer HDI Flex
Flip Chip Bumps
Transducer
ASIC Die

7 mm
Low Level Gamma Photon Detector Module

9 layer HyperBGA PTFE Substrate
- Bottom side CZT Crystal
- Passives on mini card
- S. Steel Stiffener
- Top side Wirebonded ASIC
- 50 micron UV laser drilled vias
- 25 micron trace
- 33 micron space

Hyper Substrate X-Section
Enable System Miniaturization using SiP: Bare die, HDI Substrate Materials, Assembly Technology & Manufacturing

- Combining advanced flip chip & wirebond with maximum HDI plastic substrates

- Deliver maximum reliability and electrical performance for RF and High Bandwidth Digital

- System Level Shrink for SWaP
 - PWB redesigns into fully integrated System in Package
 - 24X system size reductions have been realized
 - Lower cost next level assemblies (lower layer count PWB’s)

Deliver the industry’s smallest packages combined with superior package reliability and robust electrical performance!
Acknowledgments

• The author would like to thank CERN for their invitation to participate in the ACES Workshop in Geneva and also thank the CEO of Endicott Interconnect Technologies for his kind permission to present this paper.

• Ron Nowak
 – Email: ron.nowak@eitny.com
 – Web site: www.endicottinterconnect.com