GBT Project Status

Paulo Moreira March 2011 CERN

Outline

GBT Project Status:

- GBT project overview
 - Radiation hard link
- The GBT chipset
 - The GBTIA
 - The GBLD
 - The GBT SerDes
 - The GBT SCA
- The GBT Protocol on FPGAs

The GBTX:

- GBTX-to-Frontend communication
- 8B/10B Transmitter mode
- GBTX packaging
- GBTX power consumption
- GBT Project Schedule

Defined in the "DG White Paper"

- "Work Package 3-1"
 - Objective:
 - Development of an high speed bidirectional radiation hard optical link
 - Deliverable:
 - Tested and qualified radiation hard optical link
 - Duration:
 - 4 years (2008 2011)

Radiation Hard Optical Link:

- Versatile link project:
 - Opto-electronics components
 - Radiation hardness
 - Functionality testing
- GBT project:
 - ASIC design
 - Verification
 - Radiation hardness
 - Functionality testing

The GBT Chipset

- Radiation tolerant chipset:
 - GBTIA: Transimpedance optical receiver
 - GBLD: Laser driver
 - GBTX: Data and Timing Transceiver
 - GBT-SCA: Slow control ASIC
- Supports:
 - Bidirectional data transmission
 - Bandwidth:
 - Line rate: 4.8 Gb/s
 - Effective: 3.36 Gb/s

- The target applications are:
 - Data readout
 - TTC
 - Slow control and monitoring links.
- Radiation tolerance:
 - Total dose
 - Single Event Upsets
- Custom line code:
 - Offers protection against bursts of errors on optical links
 - Up to 16 consecutive wrong bits

The **GBTIA**

Main specs:

- Bit rate 5 Gb/s (min)
- Sensitivity: 20 µA P-P (10⁻¹² BER)
- Total jitter: < 40 ps P-P
- Input overload: 1.6 mA (max)
- Dark current: 0 to 1 mA
- Supply voltage: 2.5 V
- Power consumption: 250 mW
- Die size: 0.75 mm × 1.25 mm

Engineers :

- Ping Gui SMU, USA
- Mohsine Menouni CPPM, France

Status:

- Chip fabricated and tested
- Chip fully meets specifications!
- Radiation tolerance proven!
- GBTIA + PIN-diode encapsulated in a TO Package (Versatile link project)

Future:

- Version 2 will address productivity
- Pad positions reworked to facilitate the wire bond operation between the package and ASIC
- Mean optical power monitoring to facilitate pin-diode/fiber alignment
- 2.5 V supply
- Fabrication of the final version in 2011

The GBLD

Main specs:

- Bit rate 5 Gb/s (min)
- Modulation:
 - current sink
 - Single-ended/differential
- Laser modulation current: 2 to 12 mA
- Laser bias: 2 to 43 mA
- "Equalization"
 - Pre-emphasis/de-emphasis
 - Independently programmable for rising/falling edges
- Supply voltage: 2.5 V
- Die size: 2 mm × 2 mm
- I2C programming interface

Engineers :

- Gianni Mazza INFN, Italy
- Angelo Rivetti INFN, Italy
- Ken Wyllie CERN
- Ping Gui SMU, USA

Status:

- Chip fabricated and tested
- Chip fully functional
- Performance close to specs (if corrected for the large input capacitance of the input protection diode)
- One of the protection diodes was removed by a FIB operation:
 - A significant performance improvement was observed confirming the impact of the input capacitive loading on the chip performance

Future:

- Reduce the area of the input protection diode
- Improve the bandwidth and gain of the input stage
- Design/choose a package with good thermal conductivity
- Fabrication of the final version in 2011

GBLD Measurements/Simulations

 I_{mod} = 12.08 mA and I_{pre} = 0 mA

 I_{mod} = 12.08 mA and I_{pre} = 3.2 mA

Simulations include a PCB model (SiWave 2 ½ D model)

The GBT – SCA

GBT-SCA Main specs:

- Dedicated to slow control functions
- Interfaces with the GBTX using a dedicated Elink port
- Communicates with the control room using a protocol carried (transparently) by the GBT
- Implements multiple protocol busses and functions:
 - I2C, JTAG, parallel-port, etc...
- Implements environment monitoring functions:
 - Temperature sensing
 - Multi-channel ADC
 - Multi-channel DAC

Engineers:

- Alessandro Gabrielli INFN, Italy
- Kostas Kloukinas CERN, Switzerland
- Sandro Bonacini CERN, Switzerland
- Alessandro Marchioro CERN, Switzerland
- Filipe Sousa CERN, Switzerland

<u>Status</u>

- Specification work undergoing:
- 1st Draft already available
- RTL design undergoing
- 10-bit ADC prototype:
 - Submitted for fabrication in April 2010
 - Received from the foundry in February 2011
 - Test results expected soon
- Fabrication of the final version in 2011

The GBT - SerDes

The GBT – SerDes is a demonstrator for:

- The Serializer/De-serializer critical circuits:
 - Phase-Locked Loops
 - Frequency dividers
 - Line driver/receiver
 - Constant latency barrel shifter
 - Phase shifter
- Target data rate: 4.8 Gb/s
- The chip was packaged in a custom flip-chip BGA 13 x 13 pin package

Engineers:

- Ozgur Cobanoglu CERN, Switzerland
- Federico Faccio CERN, Switzerland
- Rui Francisco CERN, Switzerland
- Ping Gui SMU, USA
- Alessandro Marchioro CERN, Switzerland
- Paulo Moreira CERN, Switzerland
- Christian Paillard CERN, Switzerland
- Ken Wyllie CERN, Switzerland

Status:

Chip is currently under testing

Ser & Des

Serializer

• The serializer if fully functional and fully complies with the specifications:

Performance:

- Data transmission:
 - No error observed
- Jitter:
 - Total jitter (1e⁻¹²): 53 ps
 - Random jitter: 2.4 ps (rms)
 - Deterministic jitter: 19 ps
 - Data dependent: 4.8 ps
 - Periodic:
 - RMS: 4.6 ps
 - PP: 19.6 ps
 - Duty-cycle-distortion: 0.6 ps
 - Inter-symbol interference: 4.8 ps

De-Serializer

The receiver is fully functional but only up to ~3 Gb/s!

Performance:

- Clock recovery operates up to 6 Gb/s
- Jitter:
 - Recovered 40 MHz clock PRBS @ 4.8 Gb/s:
 - Total jitter (1e-12): 63 ps
 - Random jitter: 4.9 ps (rms)
 - Deterministic jitter: 24 ps (pp)
 - Periodic:
 - RMS: 2 ps
 - PP: 5 ps

De-serializer: timing

- The following functions are operating correctly:
 - The clock recovery
 - The digital receiver functions:
 - Frame aligner
 - FEC decoder
 - De-scrambler
 - I/O parallel interface
- The problem is thus very likely confined to the serial-to-parallel conversion function:
 - The architecture is critically dependent on correct timing
- Very recently it seems that the (main) problem has been located:
 - However, more work is still needed to confirm it behind doubt
- If confirmed it might be possible to do a FIB operation to restore full functionality in a couple of samples!

Package: signal integrity

Simulation with a SiWave model

- A bad quality high diagram is observed at the chip input termination!
- Modeling of the package confirmed that the package is partially responsible for the degradation of the signal integrity
- A new package is being designed in collaboration with the packaging company and it will be tried in ~2 months

Eye – Diagram at 4.8 Gb/s

Comparison: Measurement/Simulation

Measured at the termination Full setup CERN 25D Curve Info Curv

Phase – Shifter

Phase-Shifter:

- Main features:
- 8 channels (3 in the GBT-SERDES prototype)
- 1 PLL + Counter generates the three frequencies: 40 / 80 and 160 MHz
- 1 DLL per channel
- Mixed digital/analogue phase shifting technique:
- Coarse de-skewing Digital
- Fine de-skewing Analogue
- Power consumption:
 - PLL: 42 mW (measured)
 - Channel: 16 mW/channel (measured)

Engineers :

- Ping Gui SMU, USA
- Tim Fedorov SMU, USA
- Paul Hartin SMU, USA
- Nataly Pico SMU, USA
- Bryan Yu SMU, USA

Status:

- Fully functional
- Fully meets the specs
 - One channel with timing problems but the cause is clearly identified with trivial solution

- **CK Period Jitter:** σ = 4.8 ps (pp = 29 ps)
- **Resolution:** $\Delta t = 48.83 \text{ ps}$
- Differential Non-Linearity:
 - $\sigma = 4.7 \text{ ps} (9.6\% \text{ of } \Delta t)$
 - $pp = 21.5 ps (44\% of \Delta t)$
- Integral Non-Linearity:
 - σ = 4.3 ps (8.7% of Δt)
 - pp = 21.9 ps (48.7% of ∆t)

The GBT Protocol on FPGAs

- GBT-SERDES successfully implemented in FPGAs:
 - Scrambler/ Descrambler + Encoder/ Decoder + Serializer/CDR
- FPGA Tested:
 - XILINX Virtex-5FXT and 6LXT
 - ALTERA Stratix II and IV GX
- Optimization studies:
 - Optimization of use of resources
 - Low and "deterministic" latency
- Firmware:
 - "Starter Kit" is available for download with various resources optimization schemes for
 - StratixIIGx and Virtex5FXT
 - Available soon for:
 - StratixIVGx and Virtex6LXT
 - Low latency
- Engineers:
 - Sophie Baron CERN, Switzerland
 - Jean-Pierre Cachemiche CPPM, France
 - Csaba Soos CERN, Switzerland
 - Steffen Muschter Stockholm University
- Users:
 - 30 registered users from all over the world (most users from collaborating institutes)
 - LHC experiments, but also CLIC, PANDA, GBT
 - Very active users are now part of the development team

Xilinx - 4.8 Gb/s

Altera + opto TRx - 4.8 Gb/s

GBTX – to – Frontend Communication

Mode	Туре	Data Rate	Notes
OFF	Power off	-	
P-Bus	parallel	80 MW/s	One 40-bit word (DDR)
B-Bus	parallel	80 MB/s	Up to 5 Bytes (DDR)
N-Bus	parallel	160 MN/s	Up to 5 Nibbles (DDR)
2 ×	serial	80 Mb/s	Up to 40 serial links
4 ×	serial	160 Mb/s	Up to 20 serial links
8 ×	serial	320 Mb/s	Up to 10 serial links
8 ×	lanes	> 320 Mb/s	See "Lanes"

JEDEC standard, JESD8-13 Scalable Low-Voltage Signalling for 400 mV (SLVS-400) http://www.jedec.org/download/search/JESD8-13.pdf

- GBTX to Frontend interface:
 - Electrical links (e-link)
 - Bidirectional
 - Operate in:
 - Serial and Parallel Modes
 - Up to 40 active links
- E-Link:
 - Three pairs:
 - D_{OUT}: GBTX -to Frontend
 - D_{IN}: Frontend to GBTX
 - CLK: GBTX -to Frontend
- Programmable data rate:
 - Independently for up/down links
 - Independently in five groups (of up to 8 links each)
 - 80, 160 and 320 Mb/s
- Lanes:
 - To achieve > 320 Mb/s
 - Two or more e-links can be grouped forming a "lane"
 - Slow data rate channel:
 - Fixed data rate: 80 Mb/s
 - General purpose data transmission
 - Compatible with GBT SCA
- Electrical standard:
 - SLVS electrical levels:
 - 100 Ω termination
 - 400 mV differential
 - 200 mV common mode
 - $I_{LOAD} = \pm 2 \text{ mA}$

GBTX 8B/10B Transmitter Mode

- In this mode:
 - 8B/10B encoding is used
 - No SEU protection
 - Only available in the simplex transmitter mode
- Motivation:
 - Simplicity of the FPGA receiver
 - Significant reduction of the resources used by the GBT receiver in the FPGAs
- Implementation:
 - A first special word is required for frame synchronization:
 - Comma character will be used
 - Idle/data frames:
 - Data frame (txDataValid = 1): One comma character followed by 11 8B/10B words
 - Idle frame (txDataValid = 0): To be specified!
 - The 12-word 8B/10B encoder will very likely require additional GBTX latency!
 - To reduce the package cost and the pin count some of the (normally) GBTX output ports will work as
 inputs
- Bandwidth:
 - User bits: 88 (82 in the GBT protocol)
 - User data rate: 3.52 Gb/s (3.28 Gb/s in the GBT protocol)
 - 3.52 Gb/s vs 3.28 Gb/s \rightarrow 7.4% increase only!

GBTX Chip and Package Size

- Total pin count: 434
- Chip size: $5.5 \times 5.5 = 30.25 \text{ mm}^2$
- Fits a 21 × 21 pin Package
- Approximate package size:
 - 1 mm pitch: 22 × 22 mm²
 - 0.8 mm pitch: 18 × 18 mm²

E-Ports (DIFF: IN/OUT/CLK)	264
E-Port SC (DIFF: IN/OUT/CLK)	6
Transmitter	12
Receiver	12
VCXO PLL	10
Phase-Shifter	16
I2C Slave	2
I2C Master	3
JTAG	5
E-Fuse Programming	4
Chip control	12
I/O Power	34
I/O Ground	34
Core Power	10
Core Ground	10
Total	434

GBTX Power Consumption

GBTX Circuit	Vdd [V]	ldd [mA]	Power [mW]	Comments
CDR	1.5	304	456	Measurement
Serializer	1.5	220	330	Measurement
Phase-Shifter	1.5	167	251	Estimated for 8 channels based on a 3 channel measurement
E-link output data buffers (44)	1.5	88.0	132	Simulation (SLVS driver with maximum current settings)
E-link clock buffers (44)	1.5	88.0	132	Simulation (SLVS driver with maximum current settings)
Phase-Aligners (11)	1.5	27.7	42	Estimated
Digital core	1.5	23	35	Estimated based on current measurement and new functionality
Other I/O	1.5	10.0	15	Estimated
VXCO PLL	1.5	5	8	Estimated
E-Link input data buffers (44)	1.5	4.4	7	Simulation
E-link de-serializers (11)	1.5	2.5	4	Estimated
E-Link serializers (11)	1.5	2.5	4	Estimated
Clock Manager	1.5	1	2	Estimated
Total	1.5	943	1414	

CDR

- Serializer
- Phase-Shifter
- E-link output data buffers (44)
- E-link clock buffers (44)
- Phase-Aligners (11)
- Digital core
- Other I/O
- VXCO PLL
- E-Link input data buffers (44)
- E-link de-serializers (11)
- E-Link serializers (11)
- Clock Manager

Project Schedule

Tasks remaining:

- GBT SerDes:
 - Understanding the receiver behaviour:
 - 3 Gb/s error free operation instead of 4.8 Gb/s
 - SEU tests
- GBTX:
 - Receiver rework
 - Power down functions (SER/CDR)
 - TX 8B/10B mode
 - Clock Manager
 - VXCO based PLL
 - 8 channel Phase-Shifter (only 3 on GBT SerDes)
 - Implement the 8B/10B transmitter mode
 - E Links
 - Bi-directional C4 pad
 - Serializers
 - Phase-Aligners
 - E-Ports:
 - Implement a bidirectional C4 pad with switchable termination resistor
 - Control Logic:
 - Watchdog and start-up state machines
 - IC channel logic
 - I2C master
 - Configuration logic:
 - Fuse bank
 - Chip assembly and verification
 - From industry:
 - BGA package (flip-chip)
 - 80 MHz crystal
 - Testing:
 - Test setup
 - Early behavioral model needed for test development
 - Software
 - Firmware
- GBLD:
 - Reduce the area of the input protection diode
 - Improve the bandwidth and gain of the input stage
 - Design/choose a package with good thermal conductivity
 - Change I/O to 1.5V
- GBTIA
 - Change pad ring
 - Average power detector circuit
 - 2.5V Supply

Project Schedule 2011

- SEU tests on GBT SerDes
 - May
- ASIC submissions:
 - GBLD: August
 - GBT SCA: November
 - GBTIA: November
 - GBTX: November