○ FCC

Field Quality of the FCC-ee Magnets

J. Bauche, FCC-ee tuning meeting, 17th March 2022.

Outline

FCC

Collider magnet designs (CDR)

Field tapering

Mitigation of field errors and orbit correction

Booster magnet specifications

Conclusions

[References]

Dipole

FCC

- Twin aperture design, magnetically coupled [1], [2], [3]
- Simple, pure, cost effective
- Low power consumption (50% w.r.t. separate magnets)
- 300 mm inter-beam distance shared between vacuum chamber size, SR absorbers, busbars and yoke return leg
- DC operation, compatible with solid iron yoke construction, but alternatives are possible
- Twin air-cooled aluminium busbar considered in CDR to be reviewed (SR in mid-plane)

Prototype 1m-long, single busbar "coil", measurements reported in [4]

Parameters (CDR) [1]

Quadrupole

FCC

- Twin aperture design, magnetically coupled [1], [2], [3]
- Only 2 racetrack coils for 8 poles, out of mid-plane (SR)
- Top-bottom assembly via non-magnetic central spacer
- Equilibrium of parallel flux distribution between horizontal and vertical field lines controlled by central gap height (adjustable with end shims on prototype
- ~10x higher flux density than in dipoles; water-cooled coil (optimization of dipole filling factor)

⁰ Magnetic model (CDR), $G_0^{0.8 \text{ T}} max = 10 \text{ T/m}, B_{\text{pole tip}} 0.42 \text{ T}$

Maximum gradient	T/m	10.0
Magnetic length	m	3.1
Number of twin units per ring		2900
Aperture diameter	$\mathbf{m}\mathbf{m}$	84
Radius for good field region	$\mathbf{m}\mathbf{m}$	10
Field quality in GFR (not counting dip. term)	10^{-4}	≈ 1
Maximum operating current	А	474
Maximum current density	A/mm^2	2.1
Number of turns		2×30
Resistance per twin magnet	$\mathrm{m}\Omega$	33.3
Inductance per twin magnet	$_{\rm mH}$	81
Maximum power per twin magnet	kW	7.4
Maximum power, 2900 units (with 5% cable losses)	MW	22.6
Iron mass per magnet	$\mathbf{k}\mathbf{g}$	4400
Copper mass per magnet (two coils)	kg	820

Prototype 1m-long

Parameters (CDR)

Quadrupole magnetic axis shift

Magnetic measurements performed on 1-m prototype [4]

- ~0.4 mm shift for each aperture between low and high fields ٠
- Mismatch MM vs. FEM (3D) at low fields not completely explained ٠
- → To be further investigated

FCC-ee tuning meeting

FCC

DIPOLE AND SEXTUPOLE COMPONENTS IN THE TWIN QUADRUPOLE

TEAT		xctr [mm]		∫b₃ [10-4 @ 10	mm]
I[A]	AP1	AP2	FEM	AP1	AP2	FEM
25	0.75	-0.75	0.17	13.1	-14.4	-57.9
50	0.22	-0.23	0.17	34.7	-35.4	-57.9
100	-0.07	0.07	0.17	46.6	-46.6	-58.0
150	-0.17	0.16	0.17	50.9	-50.9	-58.2
200	-0.22	0.22	0.18	53.5	-53.6	-59.0
250	-0.29	0.27	0.22	57.8	-57.2	-62.5
200	-0.23	0.22	0.18	53.1	-53.3	-59.0
150	-0.18	0.17	0.17	51.0	-50.6	-58.2
100	-0.10	0.09	0.17	46.9	-46.9	-58.0
50	0.15	-0.16	0.17	35.7	-35.2	-57.9
25	0.59	-0.59	0.17	15.9	-14.9	-57.9

The simulation results are for AP2, as ¼ of the magnet is modeled; furthermore, no hysteretic behavior is considered in the BH curve.

Measured magnetic axis shift and [b3]

Magnetic axis shift

Field Quality of FCC-ee Magnets, J. Bauche, TE-MSC

Sextupole

FCC

- Classical design as first approach for CDR
- Fits in 300 mm inter-beam distance, compatible with individual magnets for each beam
- Busy cross section, current and flux densities at upper values
- Vacuum chamber winglets and SR absorbers integration issue with coils on mid-plane
- Cross section could be optimized with 120° symmetry of return yoke
- → Design to be reviewed with updated specifications

Maximum strength, B"	T/m^2	807.0
Magnetic length	m	1.4
Number of units per ring		$208 \times 4 = 832 (Z, W)$
		$292 \times 8 = 2336$ (H, tt)
Number of families per ring		208 (Z, W)
		$292 (H, t\bar{t})$
Aperture diameter	mm	76
Radius for good field region (GFR)	mm	10
Field quality in GFR	10^{-4}	≈ 1
Ampere turns	А	6270
Current density	A/mm^2	7.8
Maximum power per single magnet at 182.5 GeV	kW	15.5
Average power per single magnet at 182.5 GeV	kW	4.4
Total power at 182.5 GeV (4672 units)	MW	20.5

6

Parameters (CDR)

- Energy saw-tooth effect needs to be mitigated to limit losses
- Field tunability variable with energy, up to $\pm 1.2\%$ at 182.5 GeV [1]
- Grouped every 4 FODO in present layout

Options:	
----------	--

FCC

Adjusted parameter	System	Ð	0
Magnetic length	Pole end shims	No powering	No tunability
° °			Resolution
Magnotic field	Trim windings	Tunability	Powering
Magnetic neiu	i i i i windings	Use for corrections	Impact on quadrupoles
	Trim convertors	No trim windings	Needs access to main coil
Main coil powering	minconverters	Tunability	individual turns
current	Shunt registers	Negenering	No adjustability
	Shuht resistors	No powering	Temperature dependance
Internets of field	Commente commente m	line for competions	Dimensioning
Integrated field	Separate correctors	Use for corrections	Space in layout

D cum (km)

Beam energy along ring at 182.5 GeV

Next slides will address effect of tuneable trims on magnet field quality

(More details on other options available in spare slides)

FCC

Dipole field tapering

Trim coils / trimmed busbar current

- Needed on each aperture for individual aperture trimming
- Can be made in single turn like the main busbars (*Discussed* with TE-EPC)
- One single branch per aperture is possible (top or bottom), with marginal impact on field quality
- No cross-talk between apertures (trim effect only on concerned aperture)
- Effect of trim coils or trimmed current on main busbar is identical

Current polarities in main and trim conductors

Flux density and field lines with trims activated

Trim coils

FCC

- Needed on each aperture for individual aperture trimming
- One single branch (top or bottom) per aperture not possible
- Gradient trim effect only on concerned aperture
- Significant cross-talk : both magnetic axes shift up to 0.2 mm @ 1.2% dB in same direction, even when single aperture trim is activated
- b₃ significantly affected in both apertures with same polarity

Current polarities in main and trim conductors

Flux density and field lines, trims activated

Normalized harmonics (FEM 2D)

Investigation on coupling

Tentative to decouple yokes

FCC

- Attempt to reduce flux crossing between apertures
- Coupling due to proximity of open apertures
- Effect reduces with aperture separation, but doesn't disappear
- Magnetic axis shift 3 mm for 300 mm vs. 1.5 mm for 500 mm inter-beam

Decoupled yokes, no trims activated, 300 mm inter-beam

Decoupled yokes, no trims activated, 500 mm inter-beam

FCC

Alternative design

Compensation of inner/outer asymmetry

- Chamfer on outer sides to limit flux leakage
- Magnetic axis shift and b₃ mitigated but not suppressed
- To be checked with 3D simulations

CDR design, trims activated

Alternative design, trims activated

FCC

Mitigation of field errors and orbit correction

- Systematic linear b₂ in dipoles
 → could be compensated by arc quadrupoles
- Magnetic axis shift in quadrupoles
 → could be compensated by dipole (active) trims
- b₃ in quadrupoles
 - \rightarrow could be compensated by the sextupoles?
- Dipole active trims
 - ightarrow could be used for horizontal orbit correction, but limitations for
 - connecting to a fast feedback system
- Horizontal and vertical orbit as well as skew quadrupole correctors
 - \rightarrow can be integrated in sextupoles with trim coils [5], [6]
 - ... but the sextupole strength or length may need to be reviewed

(a) Horiz. Steering; (b) Vert. steering; (c) Skew quad.*Trim coils in ALBA and SESAME sextupoles*

Booster magnet specifications

Dipole

FCC

Unit	Z	w	н	tt1	tt2	Comments
G			63.97			
G	145.84	255.86	383.80	559.38	583.69	
G/s			254			
mm			70			to be confirmed by vacuum group
mm			70			to be confirmed by vacuum group
mm			20			2/3 of the aperture
mm			20			2/3 of the aperture
	1.e-4	1.e-4	1.e-4	1.e-4	1.e-4	to be confirmed by our studies
m			11.1			
			2			
	Unit G G/s mm mm mm mm mm	Unit Z G 145.84 G/s	Unit Z W G	Unit Z W H G 63.97 63.97 G 145.84 255.86 383.80 G/s 255.86 383.80 G/s 70 70 mm 20 70 mm 20 1.e-4 1.e-4 1.e-4 1.e-4 m 22 1.11	Unit Z W H tt1 G 63.97 63.97 G 145.84 255.86 383.80 559.38 G/s 254 70 70 mm 70 70 mm 20 1.00 mm 20 1.00 1.00 1.00 1.00 20 20 20	Unit Z W H tt1 tt2 G 63.97 63.97 559.38 583.69 G/s 255.86 383.80 559.38 583.69 G/s 254 70 70 mm 70 70 70 mm 200 1.00 1.00 1.00 1.00 1.00 1.00 M 20 20 1.00 1.00 1.00 1.00 1.00 M 20 20 1.00 1.00 1.00 1.00 1.00

Very low field at injection is challenging. Windowframe configuration under study, to be compared with coil dominated magnet design

Quadrupole

Parameter	Unit	z	w	н	tt1	tt2	Comments
Aperture diameter of vacuum chamber	mm			70			to be confirmed by vacuum group
Horizontal radius GFR in QF	mm			20			2/3 of the aperture
Vertical radius GFR in QD	mm			20			2/3 of the aperture
Field quality relative to main field @ R=10 mm		2. e-4	2. e-4	2. e-4	2. e-4	2. e-4	to be confirmed by our studies
Magnetic length	m			1.5			
Gradient at injection	T.m^-1	2.	.61		3.69157		
Gradient	T.m^-1	5.95	10.44	22.15	32.28	33.69	

Preliminary values given by beam optics team

Corresponds to 1.93 T on pole tip, not realistic. Gradient will have to be reduced or magnetic length to be increased

Conclusions

FCC

Twin aperture magnet designs allow low consumption and cost efficient construction

Further optimization of the magnet designs is needed to address some open points on the field quality, in particular regarding the quadrupole magnetic axis shift due to magnetic coupling, accounting also for tuneable field tapering options

The orbit correction strategy needs to be defined to get the magnet specifications

References

FCC

- 1. *M. Benedikt et al.*, "Future circular collider conceptual design report, vol. 2: The lepton collider (FCC-ee)," Eur. Phys. J. ST., vol. 228, no. 2, 2019. (<u>https://doi.org/10.1140/epjst/e2019-900045-4</u>)
- 2. A. Milanese, "Efficient twin aperture magnets for the future circular e+/e- collider," Phys. Rev. Accel. Beams, vol. 19, 2016, Art. no. 112401.
- 3. A. Milanese and M. Bohdanowicz, "Twin aperture bending magnets and quadrupoles for FCC-ee," IEEE Trans. Appl. Supercond., vol. 28, no. 3, Apr. 2018, Art. no. 4000904.
- *A. Milanese, C. Petrone, J. Bauche*, "Magnetic Measurements of the First Short Models of Twin Aperture Magnets for FCC-ee," IEEE Trans. Appl. Supercond., vol. 30, 2020, Art. no. 4003905.
- 5. *M. Pont, E. Boter, M. Lopes*, "Magnets for the Storage ring ALBA", Proceedings of EPAC 2006, Edinburgh, Scotland.
- *6. A. Milanese*, "Design Report of the SESAME Storage Ring Sextupole and Corrector Magnets", 2013, CERN EDMS 1257260.

Thank you for your attention!

S FCC

Questions?

Spare slides

○ FCC

- Energy saw-tooth effect needs to be mitigated to limit losses
- Field tunability variable with energy, up to $\pm 1.2\%$ at 182.5 GeV [1]
- Grouped every 4 FODO in present layout

<u>options</u> .

Adjusted parameter	System	0	Q
Magnetic length	Pole and shims	No powering	No tunability
Magnetic length	Pole end sinnis	No powering	Resolution
Magnotic field	Trips windings	Tunability	Powering
Magnetic Heid	rnm windings	Use for corrections	Impact on quadrupoles
	Trim convertors	No trim windings	Needs access to main coil
Main coil powering	minconverters	Tunability	individual turns
current	Chunt registers	Negenering	No adjustability
	Shunt resistors	No powering	Temperature dependance
Integrated field	Constate correctors	Use for corrections	Dimensioning
integrated field	separate correctors	use for corrections	Space in layout

D cum (km)

Beam energy along ring at 182.5 GeV

- Needs to be modified at each energy phase
- Needs calibration for each phase with magnetic measurements at production and strong QA system over machine lifetime
- 360 length variants for 4 FODO grouping
- For dipoles, lengths range of ~ 30 cm for 24 m
- For quads, lengths range of ~ 37 mm for 3.1 m

- Energy saw-tooth effect needs to be mitigated to limit losses
- Field tunability variable with energy, up to $\pm 1.2\%$ at 182.5 GeV [1]
- Grouped every 4 FODO in present layout

Adjusted parameter	System	0	0
Magnetic length	Pole end shims	Nopowering	No tunability
			Resolution
Magnotic field	Trim windings	Tunability	Powering
viagnetic neiu	min windings	Use for corrections	Impact on guadrupoles
	Trim convertors	No trim windings	Needs access to main coil
Main coil powering	minconverters	Tunability	individual turns
current	Shunt registers	Negenering	No adjustability
	Shunt resistors	No powering	Temperature dependance
Intermeted field	Commente commente m	line for compations	Dimensioning
Integrated field	Separate correctors	Use for corrections	Space in layout

D cum (km)

Beam energy along ring at 182.5 GeV

- Tunability can be used for other corrections, e.g. horizontal orbit correction for dipoles on main bendings (limitations for feedback system)
- Impact on quadrupole axis shift and b3 (see next slides)
- Trim windings can be made simple and cheap to produce

- Energy saw-tooth effect needs to be mitigated to limit losses
- Field tunability variable with energy, up to $\pm 1.2\%$ at 182.5 GeV [1]
- Grouped every 4 FODO in present layout

Options:

Adjusted parameter	System	0	Q
Magnetic length	Pole end shims	No powering	No tunability Resolution
Magnetic field	Trim windings	Tunability Use for corrections	Powering Impact on quadrupoles
Main coil powering current	Trim converters	No trim windings Tunability	Needs access to main coil individual turns
	Shunt resistors	No powering	No adjustability Temperature dependance
Integrated field	Separate correctors	Use for corrections	Dimensioning Space in layout

D cum (km)

Beam energy along ring at 182.5 GeV

- Mostly for dipole as access to conductors of each aperture is needed
- Can be made efficiently with symmetry thanks to powering by sectors

Options:

- Energy saw-tooth effect needs to be mitigated to limit losses
- Field tunability variable with energy, up to $\pm 1.2\%$ at 182.5 GeV [1]
- Grouped every 4 FODO in present layout

D cum (km)

Beam energy along ring at 182.5 GeV

- Adjusted System parameter No tunability Magnetic length Pole end shims No powering Resolution Tunability Powering Magnetic field Trim windings Use for corrections Impact on guadrupoles Needs access to main coil No trim windings Trim converters Main coil powering Tunability individual turns current No adjustability Shunt resistors No powering Temperature dependance Dimensioning Separate correctors Use for corrections Integrated field Space in layout
- The cheapest! (for dipoles only)
- · Precision and stability to be assessed
- Needs powering by sectors for symmetric correction

Options:

- Energy saw-tooth effect needs to be mitigated to limit losses
- Field tunability variable with energy, up to $\pm 1.2\%$ at 182.5 GeV [1]
- Grouped every 4 FODO in present layout

D cum (km)

Beam energy along ring at 182.5 GeV

- Adjusted System parameter No tunability Magnetic length Pole end shims No powering Resolution Tunability Powering Magnetic field Trim windings Use for corrections Impact on guadrupoles Needs access to main coil No trim windings Trim converters Main coil powering Tunability individual turns No adjustability current No powering Shunt resistors Temperature dependance Dimensioning Separate correctors Use for corrections Integrated field Space in layout
- For dipoles, probably ~10x higher strength needed than classical H orbit correctors