

What is wrong with multileptons + b-jets?

Elizaveta Shabalina University of Göttingen

Didar Dobur University of Ghent

LHC Top WG meeting (June 15-17, 2022, CERN)

Introduction

\Box Multilepton (e,µ) final states with b-jets:

- 2-leptons with the same electric charge (2LSS)
- □ 3-leptons

Introduction

\Box Multilepton (e, μ) final states with b-jets:

- 2-leptons with the same electric charge (2LSS)
- □ 3-leptons

b

 $t \rightarrow bW^+$

 $\tilde{\chi}_2^0$

p

Common features

D Multilepton selection

- Advantage: suppresses SM background
- Disadvantage: low branching fractions of W,Z

D 2LSS

- ttW is the main background
- ttZ, dibosons
- charge mis-identification (electron)
- fake leptons

0 3L

- Iower background than in 2LSS
- ttW, ttZ, dibosons
- fake leptons

tt+X status

 \Box $t\bar{t}Z$ and $t\bar{t}W$ are quite rare processes by themselves

Measurements with full run 2 data set started to appear last year

ttZ measurement

ttZ measurement

Selection

- □ 3 or 4 leptons
- Z candidate
- \Box CMS: N_{jets} \geq 2, N_b \geq 0
- □ ATLAS: $N_{jets} \ge 3$ with varied requirements on tightness and number of b-jets for inclusive and differential measurements

Backgrounds

- Diboson+b-jets
- non-prompt leptons
- Diboson model validated in CRs included in the fit

Main focus of ATLAS are the differential distributions

ttZ signal

- nominal: MG5_aMC@NLO + Pythia
- alternative:
 - MG5_aMC@NLO + Herwig
 - Sherpa NLO inclusive
 - Sherpa multilevel with 1 parton
 - Theory fixed order calculation at NLO, NLO+NLL, nNLO (JHEP 08 (2019) 039)

 $\sigma = 0.88^{+0.09}_{-010} \mathrm{pb}$

Extrapolated from YR4 to include off-shell effects

ttZ inclusive

Simultaneous profile likelihood fit in multiple signal/control regions

JHEP 03 (2020) 056

$$\mu = 1.13 \pm 0.06(\text{stat}) \pm 0.07(\text{syst}) \text{ pb}$$

8% precision

 $\sigma = 0.95 \pm 0.05(\text{stat}) \pm 0.06(\text{syst}) \text{ pb}$

Main systematic uncertainties

- Iepton identification (4%)
- WZ (3%) and t(t)X (3%)

Eur. Phys. J. C 81 (2021) 737

 $\mu = 1.19 \pm 0.06(\text{stat}) \pm 0.10(\text{syst}) \text{ pb}$ 10% precision

 $\sigma = 0.99 \pm 0.05(\text{stat}) \pm 0.08(\text{syst}) \text{ pb}$

Main systematic uncertainties

- ttZ parton shower model (3.1%)
- tWZ model, b-tagging (2.9% each)
- flavour tagging (2.8%)

ttZ: going differential

Differential measurements to validate and improve ttZ MC models

 \sim

и

ttZ in tZq measurement

JHEP 02 (2022) 107

Selection

forward jet

 $Z(\ell\ell)$

blν

d

Ζ

W

W

h

h

- B 3 leptons, Z candidate ≥2 jets, ≥1 b-jet
- □ 3 regions
 - ▶ 1 b-jet, 2-3 jets; ≥4 jets; ≥2 b-jets

small deficit of ttZ
 compared to data in bins
 dominated by ttZ, especially
 at high jet multiplicity

10

ttZ in tZq measurement

3 leptons, Z candidate ≥ 2 jets, ≥ 1 b-jet

Selection

3 regions

<u>JHEP 02 (2022) 107</u>

Event classifier output score

GEORG-AUGUST-UNIVERSITÄT

GÖTTINGEN

 1σ pull of ttZ normalisation corresponding to 15% higher cross section

The ttW saga: Measurements of ttH in multilepton final state

ttH multilepton - ATLAS

Number of light ℓ

Basic selection (simplified)

 $\begin{array}{ll} 2LSS & 3L \\ N_{jets} \geq 4, N_b \geq 1 & N_{jets} \geq 2, N_b \geq 1 \\ |m_{\ell\ell} - m_Z| > 10 \text{ GeV} \end{array}$

- MVA discriminants are trained to separate ttH from ttV and tt+jets
- Lower jet multiplicity regions are used to control backgrounds

ATLAS-CONF-2019-045

- Most sensitive channels
 - 2LSS and 3L
- Irreducible background
 - ▶ ttZ/W, ∨∨
- Reducible background
 - non-prompt leptons, charge misID, photon conversions
- Fake background estimate motivates CR definition
- New MC-based template method with 4 free parameters in the fit for various components:
 - HF electron, HF muon
 - material conversions
 - internal conversions

Signal extraction

BDTs are trained to separate ttH from ttV and ttH from tt+jets (i.e. non-prompt background)

In 2LSS and 3L 17 subcategories based on lepton flavour, charge and b-tagging to control lepton non-prompt, conversions and ttW, ttZ and VV

3 signal regions

+ Data

Other

QMisID

Diboson

Control regions

ttH (μ=0.58)

 $t\bar{t}(Z/\gamma^*)$ (high)

Non-prompt e

 $\ell \overline{\ell}^{+} \ell^{+}$

 $N_b \ge 2$

Diboson

---- Pre-Fit

ATLAS Preliminary

 $250 = 13 \text{ TeV}, 79.9 \text{ fb}^{-1}$

3

200

Post-Fit

🔶 Data

tŦW

 $t\bar{t}\gamma^*(low)$

Mat Conv

Uncertaintv

Non-prompt µ Other

2LSS

800

700

600

ATLAS Preliminary

vs = 13 TeV, 79.9 fb

2_ℓSS

Post-Fit

Events / bin

ATLAS-CONF-2019-045

Prefit distributions show tension between data and prediction

ttH (μ=0.58)

Mat Conv

Uncertainty

ttW

 $t\overline{t}(Z/\gamma^*)$ (high) $t\overline{t}\gamma^*$ (low)

Non-prompt e Non-prompt µ

ttH multilepton - CMS

- Simultaneous measurement of ttH and tH
- Channels with e/µ/hadronic
 τ are considered
- Concentrate on 2LSS and 3L

Backgrounds Eur. Phys. J. C 81 (2021) 378

- Non-prompt leptons
 - DD "misidentification probability" method (similar to Fake factor)
- ttZ/WZ CR:
 - Z candidate, no b-jet requirement
 - split in N_{jets} and N_b to separate ttZ and WZ

ttW CR defined by DNN

Results

Free parameters of the fit: μ_{ttH} , μ_{tH} , μ_{ttW} , μ_{ttZ}

 μ_{ttW} = 1.43 ± 0.21 (stat+sys), σ_{ttW} = 650 fb μ_{ttZ} = 1.03 ± 0.14 (stat+sys), σ_{ttZ} = 839 fb

Bin number

Searches for 4-top quark production in multilepton final state

SM 4-top search CMS

Eur. Phys. J. C 80 (2020) 75

□ 2ℓSS and 3ℓ channel signature

- 4 b-jets from 4 top quarks
- 4 or 2 jets from W
- Baseline selection
 - \geq 2 jets, \geq 2 b-jets
 - ▶ H_T>300 GeV
 - ► E_Tmiss > 50 GeV
 - ▶ 30 GeV Z(ℓ⁺ℓ⁻) mass window cut

BDT	option	of ana	lysis	does	not	have	ttW	CR
-----	--------	--------	-------	------	-----	------	-----	----

N_ℓ	N _b	$N_{ m jets}$	Region
		≤ 5	CRW
	2	6	SR1
		7	SR2
		≥ 8	SR3
2		5	SR4
	3	6	SR5
		7	SR6
		≥ 8	SR7
	≥ 4	≥ 5	SR8
	2	5	SR9
		6	SR10
> 2		≥ 7	SR11
≥ 5	≥ 3	4	SR12
		5	SR13
		≥ 6	SR14
Inver	Inverted resonance veto		

4-top search: ttW/ttZ CR

Prefit plots

DD methods for nonprompt and charge misID leptons

 ttW CR: excess of data over prediction for nj=4,5
 ttZ CR: excess in nj=5

ttW/ttZ normalisation in the fit: 40% Gaussian prior

ttW/ttZ corrections

prefit plots in SR after ttV correction

Corrections of ttW, ttZ simulation (MG5_aMC@NLO+Pythia8)

with extra jets

- compare light-flavour jet
 multiplicity in dilepton *tt* events in
 data and MG5_aMC@NLO+Pythia8
- derive correction and apply as weight to ttV
- weights vary between 1.46 and0.77 for 1 to 4 additional jets

with extra b-jets

- factor of 1.7±0.6 is applied to improve modelling of extra heavy flavour jets
- value is based on measured ratio of tībb and tījj ratio
- 70% increase of events with additional *bb* pair

Uncertainties on corrections are included in systematics

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

4-top search result

Post-fit $t\bar{t}W/t\bar{t}Z$ scaled by 1.3±0.2

- Dominant systematics:
 - modelling of additional b-jets (11%)
 - □ JES (9%) JER (6%)
 - □ b-tagging (6%)

In BDT analysis ttW is constrained by regions with low BDT score

 $\sigma(t\bar{t}t\bar{t}) = 12.6^{+5.8}_{-5.2}$ fb

2.6 (2.7) σ observed (expected) significance

GEORG-AUGUST-UNIVERSITÄT

4-top: ATLAS

Eur. Phys. J. C 80 (2020) 1085 139 fb⁻¹

Basic selection

- $\Box \geq 4$ jets, ≥ 1 b-jets
- $\square |m_{\ell\ell} m_Z| > 10 \text{ GeV for OS SF}$ pairs in 3L selection
- Fake background estimate motivates CR definition
- MC-based template method with 4 free parameters included in the signal extraction fit
 - HF electron, HF muon
 - material conversions
 - internal conversions

ttX background model

$\Box t\bar{t}W$ validation region:

- $\Box \geq 4$ jets, ≥ 2 b-jets
- plot N₊ N₋ to suppress all charge symmetric backgrounds

D Systematic uncertainties on $t\bar{t}W$:

- \Box 125% on $t\bar{t}W$ +7 jets
- \Box 300% on $t\bar{t}W$ +8 jets
- □ 50% on *tt̄W*+3b, *tt̄W*≥4b
- □ Additional 50% uncertainty is applied to $t\bar{t}Z$ and $t\bar{t}H$ with 3 and ≥4b jets
- 100% uncertainty on 3-top cross section and additional 50% on ttt+b

 $\sigma_{\rm ffW} = 601 \, {\rm fb}$

Parameter	$NF_{t\bar{t}W}$	NF _{CO}	NF_{γ^*}	NF _{HFe}	NF _{HFµ}
Value	1.6 ± 0.3	1.6 ± 0.5	0.9 ± 0.4	0.8 ± 0.4	1.0 ± 0.4

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

4-top search result

- Inclusive signal region
 - $\square \geq 6$ jets, ≥ 2 b-jets, H_T>500 GeV
 - BDT is trained to separate signal from background
- Signal extraction
 - simultaneous fit to BDT score and distributions in 4 CRs

Postfit overall ttW^{-} background yield in the signal-enriched region with a BDT > 0 increased from 12.4 ± 8.8 events prefit to 23.2 ± 10.1 events, i.e. by a factor of 1.9

4.3 (2.4) σ observed (expected) significance

Evidence for the 4-top quark production

Consistent with SM prediction at 1.7 σ

4-top summary

ttW measurement

ttW measurement

CMS-PAS-TOP-21-01

Selection

- 2 same-sign or 3 leptons
- \Box Z veto (ee, $\mu\mu$) in 3L and in (eeSS)
- $\square \ N_{jets} \geq 2$
- □ 1b medium or 2b loose in 2LSS
- at least 1b medium in 3L
- □ Large E_T^{mis} in 2LSS

Strategy

- 2LSS: multiclass NN with 4 nodes
 - ttW, non-prompt, ttH/ttZ, ttγ*
- 3L: categorisation based on N_{jets},
 N_b, lepton charge
 - □ fit to m(3L) in each category
- WZ and ttZ CR
- DD non-prompt and charge misID leptons

WZ and ttZ CR

Results

ttZ, WZ, ZZ normalisations are free parameters of the fit

Assumed ttW SM σ_{ttW} = 592 fb

Measured combined cross section corresponds to µ_{ttw} = 1.47

Significant deviation from prediction for ttW+/ttW- ratio = 1.94+0.37-0.24

What can go wrong in multilepton+b analysis?

ttZ normalisation

- CMS: NLO with EWK corrections (YR4, on-shell only): 840 fb
- □ ATLAS: added off shell contribution:

880 fb

ttW normalisation

- □ NLO in QCD with leading NLO EW corrections (YR4) : 600^{+13}_{-12} fb
- Current analyses : assumed cross section vary from 592 to 650 fb
- Can't explain data/prediction tension but it would be nice to use one recommended value in Top and Higgs measurements

ttW model: MC simulation

CMS (in ttW measurement):

□ MadGraph5_aMC 2.6.0 at NLO in QCD with $\alpha_s^3 \alpha$ term included

- \Box The $\alpha^3 \alpha_s$ term is simulated separately by MadGraph5_aMC
- ATLAS (in 4-top analysis)

Sherpa 2.2.1 NLO + 1p@NLO +2p@LO

- There are hints of mismodelling
- Depending on the phase space of the CR fitted μ_{ttW} can be different
 Can differ between 2LSS and 3L channel

Low jet multiplicity

High jet multiplicity

Other MC modelling

There is sensitivity to

WZ and ZZ with additional jets and b-jets

Modelling of rare backgrounds

- □ 3-top
- □ ttWW
- □ ...

We are sensitive to the tails of distributions and to seemingly small contributions

Fakes: misidentified or non-prompt leptons

Muons:

 $\hfill\square$ mainly semileptonic heavy flavor decays (b, c \rightarrow qW \rightarrow qev) plus small contribution from in-flight decays

Electrons:

- $\label{eq:semileptonic heavy flavor decays (b, c \rightarrow qW \rightarrow qev)} \label{eq:semileptonic heavy flavor decays (b, c \rightarrow qW \rightarrow qev)}$
- □ photon conversions γ->e+e-
- light flavor jets: hadrons misidentified as electrons
- In 2LSS and 3L mainly from tt and DY production
- Photon conversions are taken from MC simulation by CMS since they are very well modelled

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Fakes: methods

- Data-driven "tight-to-loose" (CMS)
- Matrix Method in ATLAS is similar
 - Require to evaluate TL probability (f)
 - CMS region to measure f is far away from signal region —> fake composition and kinematics might be different
 - ATLAS measured f very close to signal region —> potential signal contamination

- Recent ATLAS measurements use template method
 - Relies significantly on MC
 - Obtain MC templates for the different fakes sources
 - Perform a fit to data in dedicated CRs to extract normalisation factors

35

Conclusions

- Majority of measurements in multilepton+b-jet final state use full run 2 data set
- Consistent picture between ATLAS and CMS
 - ttZ is consistent with the prediction within 1 sigma and does not show obvious mismodelling of kinematics
 - ttW normalisation is significantly above the prediction and there are hints of mismodelling on kinematics
 - differential measurement of ttW is critical to improve understanding of this background
 - uncertainties might be large: hard to define region pure in ttW with good statistics

Plots from Josh McFayden

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

Backup

GEORG-AUGUST-UNIVERSITÄT GÖTTINGEN

More ttZ

JHEP 12 (2021) 083

- EFT-focused analysis of ttZ and tZ events
- Full run 2 data set
- Same inclusive selection
- MVA to separate regions enriched in ttZ, tZ and other (mainly WZ)

Pre-fit plot don't seem to show any problem with ttZ normalisation

- Consider 5 processes: ttH, tHq, ttll, tllq, ttlv
- SM constraints on all background normalisations
- Extraction of various Wilson coefficients

CMS search for new physics

JHEP 03 (2021) 095