Quantum Information with Top Quarks LHC TOP WG Meeting

Based on EPJP 136, 907 (2021) and 2203.05582

Yoav Afik, Juan Ramón Muñoz de Nova

16.06.2022

Overview

- The Standard Model is a QFT:
 - Special Relativity.
 - Quantum Mechanics.
- Fundamental properties of Quantum Mechanics can be tested via the Standard Model.

- Implementation of canonical techniques of Quantum Information at High-Energy Colliders.
- Fundamental Quantum Mechanics at the Frontier of known Physics.

Overview

- The Standard Model is a QFT:
 - Special Relativity.
 - Quantum Mechanics.
- Fundamental properties of Quantum Mechanics can be tested via the Standard Model.

- Implementation of canonical techniques of Quantum Information at High-Energy Colliders.
- Fundamental Quantum Mechanics at the Frontier of known Physics.
- Two parts are in the talk:
 - Theory: basic concepts.
 - Solution Phenomenology: implementation for $t\bar{t}$ in hadron colliders.

First part: Theory

Basic concepts.

• **Pure state:** can be described by wave-functions $\sum_{i} \alpha_{i} \cdot |\psi_{i}\rangle$.

• **Pure state:** can be described by wave-functions $\sum_{i} \alpha_{i} \cdot |\psi_{i}\rangle$.

• Example: at the LHC we cannot control the initial state.

• **Pure state:** can be described by wave-functions $\sum_{i} \alpha_{i} \cdot |\psi_{i}\rangle$.

- **Mixed state:** can be described by a density matrix: $\rho = \sum_{i} p_{i} \cdot |\psi_{i}\rangle \langle \psi_{i}|$.
 - Example: at the LHC we cannot control the initial state.

 Quantum Tomography: reconstruction of the quantum state from measurement of a set of expectation values.

Quantum Tomography: One Qubit

- Qubit: quantum system with two states (e.g., spin-1/2 particle).
- Most general density matrix for a qubit:

$$\rho = \frac{1 + \sum_{i} B_{i} \sigma^{i}}{2} = \frac{1}{2} \begin{bmatrix} 1 + B_{3} & B_{1} - iB_{2} \\ B_{1} + iB_{2} & 1 - B_{3} \end{bmatrix}$$

Only 3 parameters B_i → Quantum tomography is the measurement of spin polarization B:

$$B_i = \langle \sigma^i \rangle = \operatorname{tr}(\sigma^i \rho)$$

Quantum Information with Top Quarks

Quantum Tomography: Two Qubits

• Most general density matrix for 2 qubits:

$$\rho = \frac{1 + \sum_{i} \left(B_{i}^{+} \sigma^{i} + B_{i}^{-} \bar{\sigma}^{i} \right) + \sum_{i,j} C_{ij} \sigma^{i} \bar{\sigma}^{j}}{4}$$

 15 parameters B[±]_i, C_{ij} → Quantum tomography=Measurement of individual spin polarizations B[±] and spin correlation matrix C:

$$B_{i}^{+} = \langle \sigma^{i} \rangle , \ B_{i}^{-} = \langle \bar{\sigma}^{i} \rangle , \ C_{ij} = \langle \sigma^{i} \bar{\sigma}^{j} \rangle$$

Quantum Information with Top Quarks

Quantum Entanglement

- Two different systems A and B: $\mathcal{H} = \mathcal{H}_a \otimes \mathcal{H}_b$.
- Separable: $\rho = \sum_{n} p_n \rho_n^a \otimes \rho_n^b$.
- $\rho_n^{a,b}$ are quantum states in $A, B, \sum_n p_n = 1, p_n \ge 0$
- \bullet Classically correlated state in $\mathcal{H} \to \mathsf{can}$ be written in this form.

Quantum Entanglement

- Two different systems A and B: $\mathcal{H} = \mathcal{H}_a \otimes \mathcal{H}_b$.
- Separable: $\rho = \sum_{n} p_{n} \rho_{n}^{a} \otimes \rho_{n}^{b}$.
- $\rho_n^{a,b}$ are quantum states in $A, B, \sum_n p_n = 1, p_n \ge 0$
- Classically correlated state in $\mathcal{H} \to can$ be written in this form.
- Non-separable state is called entangled and hence, it is a non-classical state.

Separable

Non-Separable

EPR Paradox

MAY 15, 1935

PHYSICAL REVIEW

VOLUME 47

Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?

A. EINSTEIN, B. PODOLSKY AND N. ROSEN, Institute for Advanced Study, Princeton, New Jersey (Received March 25, 1935) Entanglement: "spooky action at a distance" (A. Einstein).

- Assuming two particles with spacial distance.
- When a measurement is done on one of the particles, the other one "knows" about it immediately.
- Information travel faster than light?
- Contradicts the theory of relativity.
- Conclusion: the theory of Quantum Mechanics is incomplete.

Hidden Variables

- By EPR, each particle "carries" variables that knows the state before the measurement.
- \Rightarrow There are some hidden variables that are missing in order to have a full theory.
- The Copenhagen Interpretation: superposition of states until a measurement was done.
- Bohr Vs. Einstein.

"God does not play at dice with the universe".

• Who is right?

"Quit telling God what to do!"

16.06.2022

10/26

Bell's Inequality

III.5 ON THE EINSTEIN PODOLSKY ROSEN PARADOX*

JOHN S. BELL[†]

- If local hidden variables hold, they should satisfy some inequality.
- C(x, y) are the correlations between different measurements at different detectors.
- The parameters a,b,c are different directions for the measurement.
- Original form: $1 + C(b, c) \ge |C(a, b) C(a, c)|$.

Second part: Phenomenology

Implementation for $t\bar{t}$ in hadron colliders.

Top-Quark

• General:

- Hadronisation: $\sim 10^{-23}$ s.
- Spin-decorrelation: $\sim 10^{-21}$ s.
- Top quark:
 - Lifetime: $\sim 10^{-25}$ s.
- Spin information → decay products.
- Spin-correlations between a pair of top-quarks can be measured.
- Considering leptonic decays.

Spin-Correlations between Top-Quark Pairs

- Studied extensively theoreticaly.
- Measured by the D0, CDF, ATLAS and CMS collaborations.
- No link between spin-correlations and quantum entanglement so far.
- Spin-Correlations ≠ Quantum Entanglement!
 However, Quantum Entanglement ⊂ Spin-Correlations.

LO Analytical Calculation

• Analytical calculation at leading-order. The system is defined by:

- So \hat{k} : the direction of the top with respect to the beam axis.
- The invariant mass $M_{t\bar{t}}$, $\beta = \sqrt{1 \frac{4 \cdot m_t^2}{M_{t\bar{t}}^2}}$.
- Each one $I = q\bar{q}, gg$ gives rise to $\rho^{I}(M_{t\bar{t}}, \hat{k})$ with probability $w_{I}(M_{t\bar{t}}, \hat{k})$, which is PDF dependent.

• The spin density matrix: $\rho(M_{t\bar{t}},\hat{k}) = \sum_{I=q\bar{q},gg} w_I(M_{t\bar{t}},\hat{k})\rho'(M_{t\bar{t}},\hat{k})$.

• The total quantum state: $\rho(M_{t\bar{t}}) \equiv \int_{2m_t}^{M_{t\bar{t}}} dM \int d\Omega \ p(M,\hat{k})\rho(M,\hat{k}) = \int_{2m_t}^{M_{t\bar{t}}} dM \ p(M)\rho_{\Omega}(M)$

LO Analytical Calculation

• Analytical calculation at leading-order. The system is defined by:

- $\hat{k}: the direction of the top with respect to the beam axis.$
- The invariant mass $M_{t\bar{t}}$, $\beta = \sqrt{1 \frac{4 \cdot m_t^2}{M_{t\bar{t}}^2}}$.
- Each one $I = q\bar{q}, gg$ gives rise to $\rho^{I}(M_{t\bar{t}}, \hat{k})$ with probability $w_{I}(M_{t\bar{t}}, \hat{k})$, which is PDF dependent.
- The spin density matrix: $\rho(M_{t\bar{t}},\hat{k}) = \sum_{I=q\bar{q},gg} w_I(M_{t\bar{t}},\hat{k})\rho'(M_{t\bar{t}},\hat{k})$.
- The total quantum state: $\rho(M_{t\bar{t}}) \equiv \int_{2m_t}^{M_{t\bar{t}}} dM \int d\Omega \ \rho(M, \hat{k}) \rho(M, \hat{k}) = \int_{2m_t}^{M_{t\bar{t}}} dM \ \rho(M) \rho_{\Omega}(M)$

Basis Selection

- Helicity basis: $\{\hat{k}, \hat{r}, \hat{n}\}$:
 - \hat{k} direction of the top in the $t\bar{t}$ CM frame.
 - $\bigcirc \hat{p} \text{direction of the beam.}$

 - $\hat{r} = (\hat{p} \cos \Theta \hat{k}) / \sin \Theta$. • $\hat{n} = \hat{r} \times \hat{k}$.

- Beam basis: $\{\hat{x}, \hat{y}, \hat{z}\}$:
 - \hat{z} along the beam axis.
 - \$\hat{x}, \hat{y}\$ transverse directions to the beam.
 - After averaging: $C_x = C_v = C_{\perp}$.
- $p \xrightarrow{\hat{k}} p \xrightarrow{\hat{p}} p \xrightarrow{\hat{p}} p \xrightarrow{\hat{p}} \hat{p} \xrightarrow{\hat{q}} \hat{$

Figure: Helicity and beam bases.

Experimental Observables

Quantum Entanglement:

- Concurrence C[ρ]: quantitative measurement of entanglement.
- $0 \le C[\rho] \le 1$, $C[\rho] \ne 0$ iff the state is entangled.
- Here, $C[\rho] = \max(\Delta, 0)$. Entanglement is equivalent to $\Delta = \frac{-C_{nn} + |C_{kk} + C_{rr}| - 1}{2} > 0.$

Non-Separable

Experimental Observables

Quantum Entanglement:

- Concurrence C[ρ]: quantitative measurement of entanglement.
- $0 \le C[\rho] \le 1$, $C[\rho] \ne 0$ iff the state is entangled.
- Here, $C[\rho] = \max(\Delta, 0)$. Entanglement is equivalent to $\Delta = \frac{-C_{nn} + |C_{kk} + C_{rr}| - 1}{2} > 0.$

Bell's Inequality:

- A violation of the CHSH inequality: $|\mathbf{a}_1^T \mathbf{C} (\mathbf{b}_1 - \mathbf{b}_2) + \mathbf{a}_2^T \mathbf{C} (\mathbf{b}_1 + \mathbf{b}_2)| > 2.$
 - C spin correlation matrix.
 - a₁, a₂ (b₁, b₂) axes in which we measure the spin of the top (antitop).
- Maximization: $\sqrt{\mu_1 + \mu_2} \le 1$ where $0 \le \mu_i \le 1$ are the eigenvalues of $\mathbf{C}^{\mathrm{T}}\mathbf{C}$.

Non-Separable

16.06.2022

18 / 26

Loopholes in a Collider Experiment

- Loopholes: experimental tests of Bell's inequality may not fulfill all hypotheses of the theorem.
- Collider experiment:
 - Free-will loophole: spin measurement directions should be free, independent from hidden-variables.
 - Detection loophole: only a subset of events is selected for the measurement, which can be biased.
- Collider experiments were not designed to test Bell's Inequality.

Loopholes in a Collider Experiment

- Loopholes: experimental tests of Bell's inequality may not fulfill all hypotheses of the theorem.
- Collider experiment:
 - Free-will loophole: spin measurement directions should be free, independent from hidden-variables.
 - Detection loophole: only a subset of events is selected for the measurement, which can be biased.
- Collider experiments were not designed to test Bell's Inequality.
- \rightarrow Can only detect a *weak* violation of CHSH (Bell's) Inequality.

• Bell's-Inequality \subset Quantum Entanglement.

Entanglement and Bell's Inequality Before Integration

- a) $gg \rightarrow t\bar{t}$ Concurrence.
- b) $q\bar{q} \rightarrow t\bar{t}$ Concurrence.
- c) Full LHC $\rho(M_{t\bar{t}}, \hat{k})$ Concurrence.
- d) Full Tevatron $\rho(M_{t\bar{t}}, \hat{k})$ Concurrence.
 - Solid line: entanglement limit; Dashed line: Bell's inequality limit.

• It is possible to control the $gg/q\bar{q}$ fraction by further selections, see Aguilar-Saavedra, Casas, 2205.00542 and talk by Juan Antonio Aguilar-Saavedra.

Critical Values After Integration

- We focus on *pp* interactions.
- Clear motivation to restrict to selected regions of phase space.
- Plot is shown with integration only for [2m_t, M_{tt}].
- We focus on the region close to threshold. For high *p*_T see:
 - Fabbrichesi, Floreanini, Panizzo, PRL (2021).
 - Severi, Boschi, Maltoni, Sioli, EPJC (2022).

Figure: Critical values below which entanglement and CHSH violation can be observed, for different COM values.

Measurable Entanglement Marker

- Plots are shown with integration only for [2m_t, M_{tī}].
- In particular:

 $\frac{1}{\sigma} \frac{d\sigma}{d\cos\varphi} = \frac{1}{2}(1 - D\cos\varphi)$ where φ is the angle between the lepton directions in each one of the parent top and antitop rest frames.

- $\Delta > 0 \Leftrightarrow D = \frac{\operatorname{tr}[\mathbf{C}]}{3} < -\frac{1}{3}$.
- $|tr[C]| = |\langle \sigma \cdot \bar{\sigma} \rangle| > 1$ \rightarrow violation of a Cauchy-Schwarz inequality.

Figure: Up: the value of *D*; bottom: statistical deviation from the null hypothesis (D = -1/3).

Recent Related Measurement

- Recently, *D* was measured with no selection on $M_{t\bar{t}}$ by the CMS collaboration.
- Results:

 $D = -0.237 \pm 0.011 > -1/3;$ $\Delta D/D = 4.6\%.$

 No evidence of quantum entanglement.

Figure: Distribution of $cos\varphi$. Figure is from Phys. Rev. D 100, 072002.

Quantum Tomography

 Spin polarizations B[±] and spin correlation matrix C can be extracted from cross-section σ_{μμ} of dileptonic decay:

$$\frac{1}{\sigma_{\ell\bar{\ell}}} \frac{\mathrm{d}\sigma_{\ell\bar{\ell}}}{\mathrm{d}\Omega_{+}\mathrm{d}\Omega_{-}} = \frac{1}{(4\pi)^{2}} \left[1 + \mathbf{B}^{+} \cdot \hat{\ell}_{+} - \mathbf{B}^{-} \cdot \hat{\ell}_{-} - \hat{\ell}_{+} \cdot \mathbf{C} \cdot \hat{\ell}_{-} \right]$$

- Symmetry around beam axis:
 - 2 spin correlations C_{\perp}, C_z .
 - 2 individual spin (longitudinal) polarizations B[±]_z.
- No assumption on the particular form of the quantum state:
 - 9 spin correlations C_{ij} .
 - 6 individual spin polarizations B_i^{\pm} .

Conclusions and outlook

- Implementation of ABC in quantum information at hadron colliders, in particular at the LHC: interdisciplinary, huge potential and great interest.
- Quantum Information perspective: new system to test quantum foundations at the highest-energy scale so far. Genuinely relativistic, exotic symmetries and interactions, fundamental nature.
- High-Energy perspective: quantum information techniques can inspire new approaches, new platform to test physics beyond the Standard Model:
 - See Aoude, Madge, Maltoni, Mantani, 2203.05619 and talk by Rafael Aoude.
 - See talk by Marco Fabbrichesi.

Thank You

Backup Slides

Backup

High Energy Physics Example

- At B-Factories, e^+e^- collisions can be properly adjusted in order to create $\Upsilon(4S)(b\bar{b})$.
- $\Upsilon(4S)(b\bar{b})$ decays to $B^0 + \bar{B}^0$, where we have $|B^0\rangle = |\bar{b}d\rangle, |\bar{B}^0\rangle = |b\bar{d}\rangle.$
- We get an entangled state: $\frac{1}{\sqrt{2}}(|B^0\rangle|\bar{B}^0\rangle - |\bar{B}^0\rangle|B^0\rangle).$

Intuition: Spin States at Threshold

- The state is determined by the initial spins.
- $q\bar{q}: \rho^{q\bar{q}} = (|\uparrow_{\hat{\rho}}\uparrow_{\hat{\rho}}\rangle \langle\uparrow_{\hat{\rho}}\uparrow_{\hat{\rho}}| + |\downarrow_{\hat{\rho}}\downarrow_{\hat{\rho}}\rangle \langle\downarrow_{\hat{\rho}}\downarrow_{\hat{\rho}}|)/2.$
- gg: $\rho^{gg} = |\Psi_0\rangle \langle \Psi_0|$, with $|\Psi_0\rangle = (|\uparrow_{\hat{\rho}}\downarrow_{\hat{\rho}}\rangle |\downarrow_{\hat{\rho}}\uparrow_{\hat{\rho}}\rangle)/\sqrt{2}$.
- q ar q
 ightarrow correlated, not entangled; gg
 ightarrow correlated, entangled.

Experimental Entanglement

- Entanglement has been observed in a wide variety of systems
- Testing entanglement in any new system is highly interesting by itself!

Experimental long-lived entanglement of two	nature Val 440/20 April	2006 (dok:10.103 8/ natu re0 4627	nature physics		LETTERS
macroscopic objects	LETTERS				
Brian Juligaard, Alexander Kozhekin & Eugene S. Polzik			Demonstra	ation of entanglement-by-meas	urement
Institute of Physics and Astronomy, University of Aarhus, 8000 Aarhus, Downark	Experimental determination of entanglement with a		of solid-state qubits Wolfgang Maff', Tim H. Taminiau', Lucio Robledo', Hannes Bernien', Matthew Markham ³ , Daniel J. Twitchen' and Ronald Hannon'*		
Entanglement is considered to be one of the most profound features of quantum mechanics ¹² . An entangled state of a system consisting of two subsystems cannot be described as a					
product of the quantum states of the two subsystems ¹⁴ . In this some, the earliefd system is considered inseparation band non-local, it is generally believed that entanglement is usually manifest in systems consisting of a small number of microscopic parkids. Here we demonstrate experimentally the entanglement of two accossories ($\delta \phi (tx)$, each consisting of a small sum are subsystem at 10 ⁴³ atoms. Intanglement is generated via	S. P. Walborn ¹ , P. H. Souto Ribeiro ¹ , L. Davidovich ¹ , F. Mintert ^{1,2} & A. Buchleitner ¹		PRL 99, 131802 (2007	PHYSICAL REVIEW LETTERS	week ending 28 SEPTEMBER 2007
	IETTED		Measurement of E	Einstein-Podolsky-Rosen-Type Flavor Entanglement	in $\Upsilon(4S) \rightarrow B^0 \tilde{B}^0$ Decays
		10.1038/441586-018-0038-4	VOLUME 79	7 JULY 1997	NUMBER 1
Measurement of the Entanglement of					
Two Superconducting Qubits via	o Superconducting Qubits via		Generation of Einstein-Podolsky-Rosen Pairs of Atoms		
State Tomography	Stabilized entanglement of massive mecha	nical	E. Higdey, X. Moire, O. Nogese, C. Wanderlich, M. Berne, J. M. Raimond, and S. Harcche Laboratoire Kander Bernach "Depresent and Flyingian et al. Torio Normals Superinser, A res Lionand, 17:3131 Peris Coder 63, Prime (Received Shareh 1997)		
Mathlas Sleffen,* M. Ansmarn, Radoslav C. Blatsak, N. Kais, Erk Jasens, R. McDerme K, Mathlew Norley, E. M. Weig, A. N. Orland, John H. Mathioly	oscillators				
Descention of quarters estingheners, a key results in guarters computeds a shing from a monotoxical conversion of descriptions complete measurement of all descriptions using simultaneous measurement and data tense guaphy, and demonstrated estrangement between the solid-state splits. Saring addit constrations and cognitive tenses the super- conducting phase solid server used to prevente a biological splits. For these additional phase addition were used to prevente a biological splits and the server used to prevente a biological splits. For these additions are used to prevente a biological splits are used to prevente a biological splits. For these additions are used to prevente a biological splits. For the solid to recomplete yielded a splits.	C. F. Ockeloen-Korppi ¹ , E. Damskägg ¹ , IM. Pirkkalainen ¹ , M. Asjad ² , A. A. Clerk ³ , F. Massel ² , M. J. Wo	iley ⁴ & M. A. Sillanpää ¹ *	Pairs of atoms have been prepared in an entangled state of the Einstein-Podolsky-Rosen (EPR) type.		
	nature ADTICLES		PHYSICAL REVIEW LETTERS 122, 113602 (2019)		
eges at unitary ported of the system, indicated that lager implementations are write rack.	physics PURLISHED CALLAR: 15 AUGUST 201	5 DOI: 10.3038/NP-053863	Editors' Eugpertion	Peeksred in Physics	
at Room Temperature			On-Deman	ad Semiconductor Source of Entangled Photons Wi Has High Fidelity, Efficiency, and Indistinguish	tich Simultaneously ability
C.C. Lee, ". M. K. Sprague," B. J. Septian, ". J. Nana, ". N. C. Lawford," XM. Jm," J. Champion," P. Nieberberger, T. F. Reim," O. Begand, "D. Jakoh," I. A. Walensby";	Observation of quantum Hawking radia	tion and	Hui Wang,12 H	lai Hu, ³ TH. Chung, ¹² Jian Qin, ¹² Xiaoxia Yang, ³ JP. Li, ¹² R	-Z. Liu,12 HS. Zhong,12
Summer everyphenese in the number of nationary will benefs the magnitudes table the numbers with indicated and indicated to take the handrage beneft the quantum and calculate with the indicated to take the the numbers benefit to the state that the state of the state takes and hand calculate and with the relation of the state of the state takes and hand calculate and the state of the state of the state of the state takes and hand calculate and the state of the state of the state of the state of the state of	its entanglement in an analogue black h Jeff Steinhauer	ole	YM.	He, ¹² Xing Ding, ¹³ Y.H. Deng, ¹² Qing Dai, ³² Y.H. Hao, ^{12,3} Chao-Yang Lu, ¹³ and Jian-Wei Pan ¹³	Sven Höfling, ^{1,1,5}

What is Quantum Entanglement?

- Quantum state of one particle cannot be described independently from another particle.
- \Rightarrow **Correlations** of observed physical properties of both systems.
- → Measurement performed on one system seems to be influencing other systems entangled with it.

 Observed in photons, atoms, superconductors, mesons, analog Hawking radiation, nitrogen-vacancy centers in diamond and even macroscopic diamond.