380 GeV CLIC power consumption

Alexej Grudiev (CERN) Workshop on efficient RF sources 4/7/2022

Outline

- Reminder
 - 2016 Power consumption estimate for the 1st stage optimization
 - 2018 Power consumption estimate for the Project Implementation Plan (PIP)
- Update for 100 Hz operation for high luminosity studies in 2019
- Update for the new DR design proposal, 2021
- Update for the new DB klystron parameters, 2021
- Summary

N.B. In the following slides power consumption estimate always refer to the CLIC 380 GeV Drive beam baseline option

380 GeV CLIC layout and power consumption

Updated baseline for a Staged Compact Linear Collider, CERN-2016-004, 2016

- Total power consumption of 380 GeV CLIC was estimated to be 252 MW
- It was estimated using parameterized model [*] derived from the CDR power estimates at 3, 1.5 and 0.5 TeV stages and used for 1st stage optimization
 - * B. Jeanneret, CLIC Total Electrical power: a parametrization, CERN-ACC-Note-2013-0020, 2013

Power consumption estimate for Project Implementation Plan (PIP) in 2018

CERN-2018-010-M 20 December 2018

ORGANISATION EUROPÉENNE POUR LA RECHERCHE NUCLÉAIRE CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

THE COMPACT LINEAR COLLIDER (CLIC) PROJECT IMPLEMENTATION PLAN

> GENEVA 2018

• Motivations:

- Parameterized model used in 2016 required verification at 380 GeV
- Several changes in the design parameters had been made:
 - Development of high efficiency klystrons
 - (Pre-)Damping rings bunch-to-bunch spacing reduced from 1 ns to 0.5 ns
 - Drive beam energy is reduced from 2.4 to 2.0 GeV
 - Different design of the BDS at 380 GeV
- Alternative klystron-based option of the first stage at 380 GeV needed power consumption estimate as well.

Assumptions

- Project breakdown structure (**PBS**) of the **costing tool** has been used in order to insure the consistency of the power and the cost estimate
- **Expected Operating** (not the specification) **values** have been consistently used for the RF and magnet systems

Comparison: 2016 vs 2018

Distribution of dissipated and beam powers

Power increase for operation mode at 100 Hz

This estimate was mentioned in CLIC – Note – 1143: HIGH-LUMINOSITY CLIC STUDIES

CLIC DRs

CLIC DR summary of PIP baseline

0

200

400

600

Time (ns)

(NIMA V985, 164659, 2021)

800

1000

- Very high peak power
- Larger klystron bandwidth
- Strong peak power modulations on each turn
- Inefficient due to most of average power lost

1200

- Large aperture => low R/Q
- Long cell: $\sim \lambda$ => low transit time factor
- Low field on the cavity wall

More details in: CLIC-note-1173, or in <u>rf development meeting (22 September 2021)</u>

DR Comparison: PIP baseline vs new proposal

- RF power match the average beam power => efficient
- No klystron power modulation => no large bandwidth
- Peak power requirements are SIGNIFICANTLY reduced => cost, size

Comparison DR: PIP baseline vs new proposal

CLIC DRs: power reduction due to new design

Drive beam injector complex

New ideas for CLIC 1GHz klystron for DB linac

High Efficiency 24 MW, 1 GHz, CLIC TS MBK performance summary (PIC CTS/3D)

 TABLE I. DESIGN AND SIMULATED PARAMETERS (CST/3D) OF THE

 CLIC TS MBK AND CANON MBK E3750 CATALOGUE DATA

 Parameter
 TS
 E37503
 Unit
 NOV

MHz

kV

A

 $\mu A/V^{3/2}$

MW

dB

%

mm

30

25

20 5

15 18

10

35

R

MM

Novel design Two-Stage (TS) Multi-Beam Klystron (MBK)

2nd stage is not pulsed: More efficient modulator

It has more power per klystron compared to PIP baseline: **20 MW -> 24 MW** Significant **cost** impact

It has higher Efficiency compared to PIP baseline: 70 % -> 82 % Significant impact on power consumption

Step 1: Scaling AS from 20 to 24 MW

RF acc. structure (AS) parameters for CLIC 380	PIP 20 MW MBK	New 24MW TS-MBK
Beam current	4.2	4.2
active length	2.3	2.5
Peak input power for Full Beam Loading (FBL)	18	21.5
Unloaded acc. Voltage	7.92	9.45
Loaded acc. voltage	4.08	4.875
Loaded acc gradient	1.77	1.94
RF-to-beam Efficiency	95	95
Linac parameters		
Number of AS in DBL1	62	52
Number of AS in DBL2	398	333
Total number of AS (klystron, modulators)	460	385
Total number of quads	204	172

Nominal AS input power for FBL is lower than klystron power due to margins:

- WG losses: 5%
 - Power margin for bunching (off crest operation): **3%**
- Power margin for operation and availability: **5**%
- All together ~10% less power available for FBL acceleration

More power per klystron, modulator, AS unit => less AS, less quads (TBC by BD)

Step 2: Applying higher efficiency 70 -> 82%

- 70% -> 82% is straightforward to do
- However, it should be noted that there are several other efficiencies at similar level:
- WG losses: 5% -> Efficiency : **95%**
- Modulator CW efficiency: 94%
- Modulator Pulse efficiency: 86% See next slide
- AS RF-to-beam efficiency: 95%
- So, there is a limit to which point it make sense to push the klystron efficiency. Maybe we are approaching this limit !

Step 3: Modulator pulse efficiency increase

Klystron Modulator Technology Challenges for the Compact Linear Collider (CLIC)

D. Aguglia¹, Member, IEEE, C. A. Martins², Member, IEEE, M. Cerqueira Bastos¹, D. Nisbet¹, Member, IEEE,

D. Siemaszko¹, *Member, IEEE*, E. Sklavounou¹, and P. Viarouge²

V_{kn} V_{ovs} FTS ideal pulse t_{rise} t_{set} t_{flat} t_{flat} T_{rep}

Fig. 1. Modulator output voltage performances definitions.

Modulator pulse efficiency: $Eff_{pulse} = t_{flat}/(t_{flat}+t_{set}+t_{rise})$

Aguglia (2011) optimized for 3TeV case. 95% achieved (t_{flat} =140us, t_{set} =5us, t_{rise} =3us)

For 380 GeV, set and rise time are significant fraction of the pulse (48 us): Eff_{pulse}= **86%** only

Igor said: TS MBK allow significant reduction of set time to practically zero: Eff_{pulse} = **94%**

Comparison: 20MW MBK vs 24MW TS-MBK

Power reduction due to TS MBK

Comparison of wall plug to beam efficiencies

	PIP baseline	New DR	New TS MBK
DB klystron efficiency [%]	70	70	82
DB modulator pulse efficiency [%]	86	86	94
DB complex Wall plug to DB efficiency [%]	31.8	31.8	37.6
DR wall plug to MB efficiency [%]	7.9	56.7	56.7
CLIC Wall plug to MB efficiency [%]	3.3	4.8	5.2

Summary

- CLIC 380 GeV power estimate has been updated to include several possible changes
- Increase in repetition rate from 50 to 100 Hz result in increase in power consumption by 68 MW from 168 to 236 MW
- New design of the DRs demonstrates significant reduction of the power consumption by 50 MW from 168 to 118 MW
- Using new Two Stage MBK results in 11 MW reduction in CLIC power consumption from 118 to 107 MW

Backup slides

Comparison of Drive beam and Klystron options

Preliminary 2018

Comparing power flows: Drive beam and Klystron options

¥ 60

50

40

30

20

10

0

-10

-20

Preliminary 2018

380 GeV CLIC DR parameters (PRAB22, 091601)

Parameter of DR		value	unit
Energy	Е	2.86	GeV
Circumference	С	373.7	m
Revolution frequency	f ₀	802	kHz
RF frequency	f _{RF}	2	GHz
Harmonic number	h	2493	
Energy loss per turn	eV _A	5.8	MeV
RF voltage	V _C	6.5	MV
RF stable phase	φ	-26.8	0
Bunch population	N _e	5.7	1e9
Number of bunches per train	N _b	352	
Number of trains	N _t	1	
Peak beam current	I _b	1.8	Α

 $\begin{array}{l} {\rm Figure \ 10: \ Luminosity \ against \ the \ longitudinal \ bunch \ position \ from \ the \ DRs.} \\ {\rm Strict \ specifications \ on \ the \ bunch \ spacing \ variation: \ } \\ \delta \varphi_b < \pm 1^o \ at \ 2 \ GHz \ (\pm 400 \mu m) \\ {\rm for \ Luminosity \ loss \ < \ 1\% \ (CLIC-Note-1138)} \\ \end{array}$

This is difficult to maintain due to **strong transient beam loading effects** caused by large difference between **peak** and **average beam power** values of 10.4 MW and 1.5 MW, respectively

Design philosophy for Ultra low R/Q RF cavity

- Increase cavity aperture to reduce loss factor => reduce R/Q per cavity
- Increase cavity length to reduce transit time factor => reduce R/Q per cavity
- Optimize cavity wall shape to minimize H-field to reach largest stored energy per cavity under the H-field limit of 80 kA/m (100 mT, private communication, W. Venturini, 2021) => reduce number of cavities
- R/Q per cavity x N of cavities must be below Total R/Q: 14.3 Ω

More details in: CLIC-note-1173, or in <u>rf development meeting (22 September 2021)</u>

Design of the cavity for total R/Q=14.3 Ω

Curve Info

ComplexMag H

Distance [mm]

TM011	
a [mm]	52
f [GHz]	2
a/λ	0.347
Lc [mm] (0.01Hmax)	~520
Rarc [mm]	307
Rcav [mm]	61.95
R/Q [Ω]	0.6
Emax/Vacc [1/m]	31.6
Hmax/Vacc [mA/Vm]	291

Hmax limit: 80kA/m \Rightarrow Vmax = 0.275 MV \Rightarrow Umax = 5.0 J \Rightarrow Emax = 8.7 MV/m To get this design parameters, two conditions must be met:

R/Q per cavity is $14.3\Omega/Ncav$ AND Vmax per cavity is 6.5MV/Ncav

Ncav = 24

All LOM and HOMs damped The magic flute helps to damp dipole LOM

Particle Accelerators, 1992, Vol. 40, pp.17–41 Reprints available directly from the publisher Photocopying permitted by license only ©1992 Gordon & Breach Science Publishers, S.A. Printed in the United States of America.

DESIGN CHALLENGES FOR HIGH CURRENT STORAGE RINGS*

H. PADAMSEE, P. BARNES, C. CHEN, W. HARTUNG, J. KIRCHGESSNER, D. MOFFAT, R. RINGROSE, D. RUBIN, Y. SAMED, D. SARANITI, J. SEARS, Q.S. SHU and M. TIGNER

Laboratory of Nuclear Studies, Cornell University

One of the BCC beam pipes is 'fluted' using 4 longitudinal grooves to reduce TE11 WG mode cutoff from 1.69 GHz to lower value and let TE111 mode at f=1.59 GHz escape.

Summary table. More details : CLIC-note-1173, or in <u>rf development meeting</u>

Case	1	2	3	4
Cavity R/Q [Ω]	0.6		2.04	
a [mm]	52		50	
Lc [mm] (0.01Hmax)	520		500	
Rarc [mm]	307		160	
Rcav [mm]	61.95		63.55	
Total R/Q [Ω]	14.3	7.15	28.6	14.3
Bunch phase variation [°] @2GHz	1	0.5	2	1
Ncav	24	12	14	7
Cavity input power Pin [kW]	60	120	103	206
Bmax [mT]	100	200	100	200
Hmax [kA/m]	80	160	80	160
Emax [MV/m]	8.7	17.4	11.7	23.4
Cavity voltage Vc [MV]	0.275	0.55	0.47	0.94
Cavity stored energy Uc [J]	5.0	20.0	4.3	17.1

LLRF simulation results

Due to the very high cavity filling time, the closed-loop response of the RF/LLRF system is slow. In addition, there is a 350 ns delay in the RF loop. Very small klystron power modulation

2000