

CEPC high efficiency klystron status

Zhou Zusheng

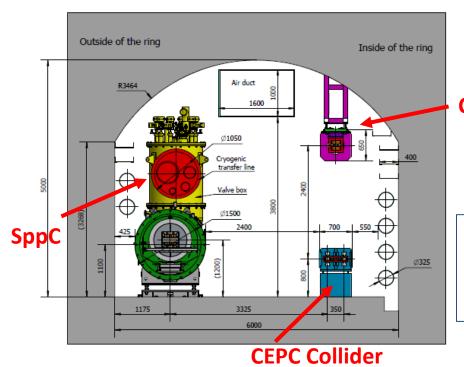
zhouzs@ihep.ac.cn

On behalf of CEPC RF power source team

Jul.5, 2022

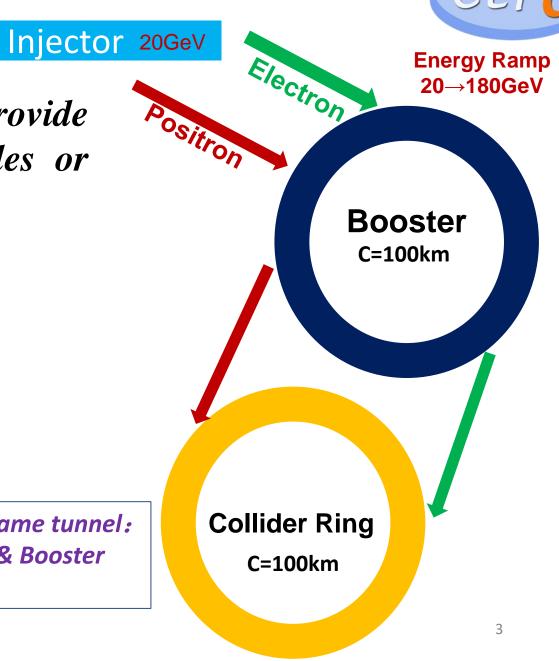
Outline

- **◆**Design consideration
- **♦**R&D Status
 - HE klystron conditioning
 - MBK design and fabrication progress
- **♦**Summary



中國科學院為維約用研究所 Design consideration

High power RF sources are required to provide the energy needed to accelerate particles or keep particles energy stable.

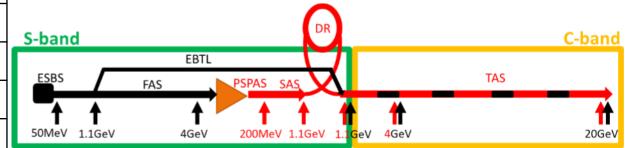

TUNNEL CROSS SECTION OF THE ARC AREA

CEPC Booster

Three rings in the same tunnel:

- > CEPC Collider & Booster
- > SppC

Design consideration


P band klystron for CEPC Collider

Parameters	Value	
Freq.(MHz)	650	
Klystron QTY.	120	
Klystron power(kW)	800	
1 to 2 SC cavity		

RF Tunnel Wall Phase fine-tuning section Circulator Magic Tee Load Directional Coupler 2-cell cavity Directional Coupler 2-cell cavity

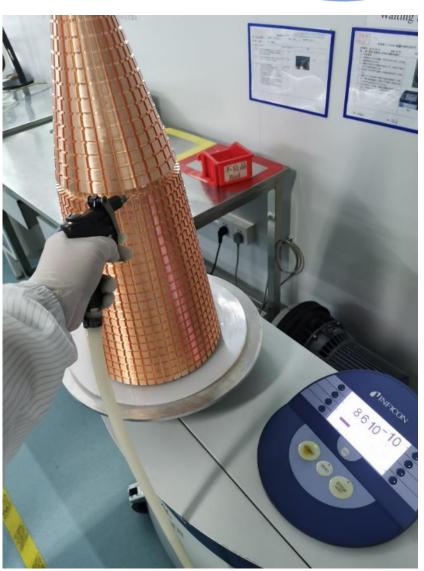
C&S band klystron for CEPC Linac

Parameters	S	C
Freq.(MHz)	2860	5720
Klystron QTY.	35	147
Klystron power(MW)	80	50
RF structure distribution	1-to-2&1-to-4	1-to-2

High efficiency klystron conditioning

科學院為能物理研究所 Milestone

- **◆ Jan., 2021: Klystron manufacture started**
- **♦** Jul., 2021: Parts fabrication completed
- **♦** Nov., 2021: Gun processing and klystron baking out
- **◆** Dec., 2021: Klystron delivered to IHEP
- **◆** Mar., 2022: Klystron conditioning started
 - **1** Cold high voltage conditioning
 - ② Cathode activation
 - **3** High voltage conditioning
 - **4 RF** Conditioning(Pulsed and CW)



Fabrication processing

Electron gun

Cold test

Collector body

Electron gun processing

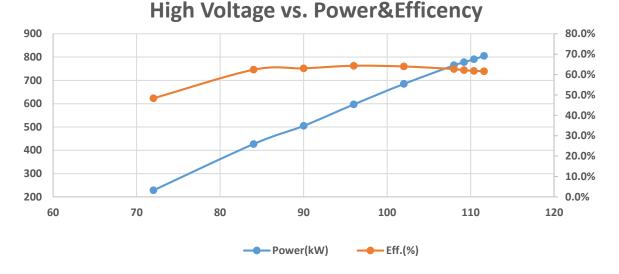
Cathode Temp. 975 degree C @Fil. 27V/6A

Klystron final assembly

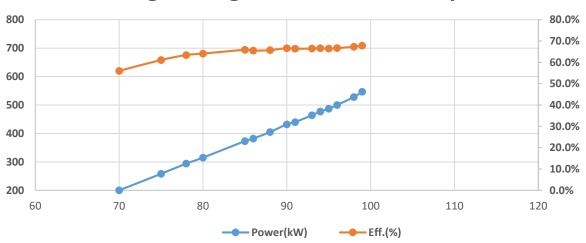
Klystron final assembly

High power test preparation




Klystron is in place in IHEP PAPS site

中國科學院為維約用湖窓所 Latest conditioning status until May. 13 CET Institute of High Energy Of Sciences Academy of Sciences



Pulsed RF Mode (30% duty factor, 60ms/5Hz)

CW RF Mode

High Voltage vs. Power&Efficency

Power Max. 805kW, Eff. Max: 64%

Power Max. 547kW, Eff. Max: 67.8% More time for conditioning and commissioning for higher

power and higher efficiency.

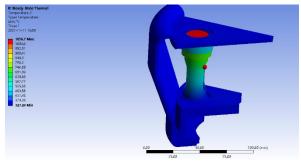
MBK design and fabrication status

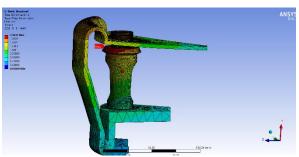
• Final physical design was completed and reviewed on July 2021.

Parameters	Value
Frequency	650 MHz
Output Power	800 kW
Efficiency	80.5%
1dB bandwith	±0.75 MHz
Beam voltage	54 kV
Beam current	2.51*8 A
Beam number	8

Nuclear Inst. and Methods in Physics Research, A 1026 (2022) 166208

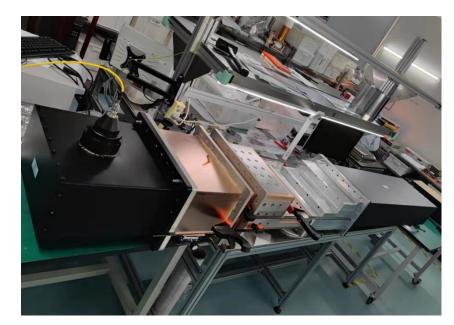
Design study and modeling of multi-beam Klystron for Circular Electron Positron Collider

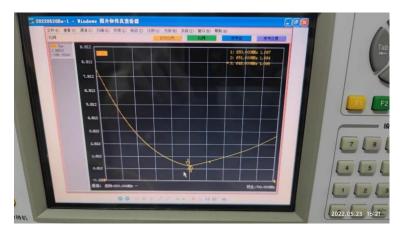

Shengchang Wang a,b,*, Shigeki Fukuda c, Zhijun Lu b, Zaib un Nisa b, Zusheng Zhou b, Ouzheng Xiao b, Guoxi Pei



- Mechanical design was also reviewed on December 2021. Some work was also done:
 - Cavities tolerance analysis
 - Water cooling system of cavity chain
 - Engineering design for focusing coil and electron gun
 - Tolerance analysis for magnet coil

Gun thermal analysis


MBK Mechanical design


图科学院為維物現湖完新 Stitute of High Energy Physics MBK Fabrication Status Chinese Academy of Sciences

- •Complete processing and cold test of two types of output window prototype (alumina window, beryllium oxide window).
- The cold test results (center frequency, VSWR, bandwidth) of the two windows meet the design requirements.

Output window prototype

Test result	Alumina	Beryllium oxide
VSWR@651MHz	1.048	1.089
VSWR@650MHz	1.034	1.084
VSWR@649MHz	1.052	1.096

- •The machining process of experimental cavity is more than half done.
- Fabrication of electron gun, collector, focusing coil is also in progress.

experiment cavity

Summary

- HE klystron conditioning is in progress and will be completed in the near future.
- Fabrication of MBK is also in progress and will be completed at the end of this year.

Thanks for your attention!