

FIRST OPERATION OF A KLYSTRON FITTED WITH A SUPERCONDUCTING MGB₂ SOLENOID

> N. CATALAN-LASHERAS, M. BORONAT, G. MCMONAGLE, I. SYRATCHEV, CERN A. BAIG, A. CASTILLA-LOEZA, COCKCROFT INSTITUTE T. KIMURA, P. KOLDA, COMMUNICATION & POWER INDUSTRIES S. MICHIZONO , A. YAMAMOTO, KEK

OUTLOOK

- New projects are rated by their efficiency and sustainability performance
- Recent years have seen tremendous effort to make more efficient klystrons

MOTIVATION

Among effects studied: E field expansion in the drift tubes; Ohmic loses; Space charge depression; Bunch saturation; Bunch congregation; Bunch stratification; Radial bunch expansion; Reflected electrons.

J. Cai and I. Syratchev, "Design Study of X-band High Efficiency Klystrons for CLIC," 2020 IEEE 21st International Conference on Vacuum Electronics (IVEC), 2020, pp. 121-122, doi: 10.1109/IVEC45766.2020.9520585.

SOLENOID FOR PULSED KLYSTRONS

Solenoidal field needed to confine the electron beam in the klystron channel.

- Electromagnet sits at constant current even for pulsed klystrons with low duty cycle
- In the x-band facility consumption of the electromagnet represents ~30% of the total power source

AC power/RF efficiency = 15.2%

SOLENOID FOR PULSED KLYSTRONS

- Solenoidal field needed to confine the electron beam in the klystron channel.
- Electromagnet sits at constant current even for pulsed klystrons with low duty cycle
- In the x-band facility consumption of the electromagnet represents ~30% of the total power source
- With a gain in klystron efficiency from 40% to 65% and an optimized pulse we can save 20 KW per RF unit
- The solenoid will then represent 37% of the power`

AC power/RF efficiency = 21.0%

SOLENOID DESIGN AND CHARACTERISTICS

- Proposal from A. Yamamoto (KEK) to build a superconducting solenoid that could be tested and operational on the CERN X-band facility
- The required magnetic field is well below 1T so we can use MgB₂ working below 30 K to improve the cryocooler efficiency ad minimize costs

Coil technology	Unit	Cu	MgB ₂
Central field	Т	0.6	0.8
Current	А	2x300	57
Voltage	V	35	0
Cooling method		Water	Cryo-cooler
Temp	К	300	~25
Wall plug power	kW	20	<3

A. Yamamoto et al., "Applying Superconducting Magnet Technology for High-Efficiency Klystrons in Particle Accelerator RF Systems", IEEE Transactions on Applied Superconductivity, vol. 30, no. 4, pp. 1-4, Jun. 2020.doi:10.1109/TASC.2020.2978471

CABLE AND CABLE

TESTS

- 8km MgB₂ wire (0,67 mm) manufactured by Hitachi. Based on experience for MRI magnets
- 21 samples measured. Very good homogeneity
- Critical temperature of the cable at the operational point is 29 K.
 - 57.1 A and 1.06 T field in the coil
- Works at 46% of the load-line

H. Tanaka et al., "Performance of MgB2 Superconductor Developed for High-Efficiency Klystron Applications", IEEE Transactions on Applied Superconductivity, vol. 30, no. 4, pp. 1-5, Jun. 2020. doi:10.1109/TASC.2020.2970391

MANUFACTURING OF THE SC SOLENOID IN HITACHI

- Wind and react coils (2) in an iron cryostat that serves also as return yoke.
- Passive quench protection

Superconductor	MgB2	
Maximum B field	0.8	Т
Current	57.1	А
Inductance	7.3	Н
Max. field in coil	1.06	Т
Operating temperature	<20	Κ
Stored energy	11.8	kJ
Weight	600	Kg
AC plug power	<3	kW

- Quench tests.
 - Self protected
- 10-hours excitation tests
- Power abort test
- Magnetic field measurements
 - Very good agreement

FIRST TESTS AT HITACHI

H. WATANABE *ET AL.*, "DEVELOPMENT OF PROTOTYPE MGB2 SUPERCONDUCTING SOLENOID MAGNET FOR HIGH-EFFICIENCY KLYSTRON APPLICATIONS", *IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 30, NO. 4, PP. 1-6, JUN. 2020.* DOI:10.1109/TASC.2020.297223

COOL-DOWN

• Two twin coils cooled by conduction.

HC-4A

- Insulation vacuum
- Helium only on the cryocooler/cold head
- Air cooled-compressor Cryocooler plus cold head
- Available instrumentation:
 - Temperature sensors. Thermocouples and PtCo sensors
 - Voltage taps
 - Heaters (not used at CERN)

MAGNETIC MEASUREMENTS

- Measurements done with a hall probe
- Homogeneity and reproducibility are very good!
- Small difference between magnets at the level of fringe fields
- Close to the cathode where beam rigidity is smaller. Probably important for performance

NC Solenoid - 296 A
SC Solenoid - Scaled @ 29.9 A

INSTALLATION IN THE KLYSTRON

- Full compatibility with klystron and modulator interfaces
- Larger volume required on the side of modulator
- Special care needed with handling as the load is asymmetric
- Vacuum pump permanently connected (insulation vacuum)

INTERLOCKS AND SAFETY

- From two to three feeds (current, cooling, vacuum)
- Interlocks on vacuum and temperature to protect the solenoid
- Interlock on solenoid current to protect the klystron

FIRST MEASUREMENTS

- Measurements could not be done at nominal conditions as load not conditioned to full power
 - Max power ~20 MW
 - Originally optimized at CPI for nominal power
 @ 50 MW
- Current adjusted for central field.
- Nominal counter-coil settings for NC solenoid
- SC gain curve shows higher gain and faster saturation
- Counter-coil current adjusted for smaller beam to match original gain

RE-TUNING OF THE COUNTER- COIL

- Counter-coil re-tuned by an additional 20% in current to recover performance
- Same correction is valid for every klystron gain
- Counter-coil current settings are valid for all set-points

CONCLUSIONS

- SC technology can be applied to klystron solenoid
- Energy consumption reduced by 90%
 - 20 -> <3 kW. Further reductions still possible
- Magnetic field very similar to the conventional magnet
- No interception
- Some adjustments needed to recover performance inside the tuning range of the power supply
- Large operational margin makes it very stable and robust against failures

AC power/RF efficiency = 21%

CONCLUSIONS

- SC technology can be applied to klystron solenoid
- Energy consumption reduced by 90%
 - 20 -> <3 kW. Further reductions still possible
- Magnetic field very similar to the conventional magnet
- No interception
- Some adjustments needed to recover performance inside the tuning range of the power supply
- Large operational margin makes it very stable and robust against failures

With a high efficiency klystron, modulator AND a SC solenoid we will save >50% of the power for the same output RF power!

AC power/RF efficiency = 31.7%

THANKS