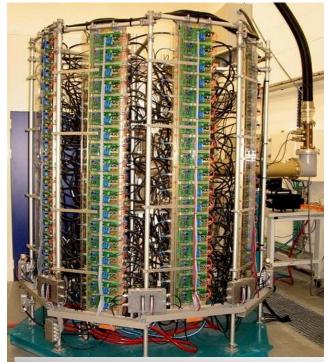
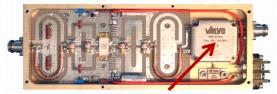

SSA DEVELOPMENTS AT SOLEIL

Workshop on Efficient RF sources

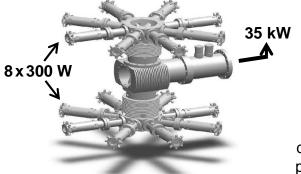
Château de Bossey, 4-6 July 2022 Massamba DIOP On Behalf of the RF & LINAC Group



Combining in // a number of elementary amplifier modules (or pallets) of a few 100 W (up to ~ 1 kW)



Booster original 35 kW SSPA



In 2005, world record for a SSPA

Circulator

330 W CW - 352 MHz amplifier module VDMOS D1029UK05 from SEMELAB (**G = 11 dB**, **η = 62 %**)

600 W - 280 / 28 V dc power converter

> Power combiner (8 x 8 x 2) 8 dissipaters of <u>16 + 2</u>* modules * Pre-amplifiers

All amplifier components were designed in house and the mass production contracted to industry

~ 86 000 running hours over 13 years and <u>only one single trip from the SSPA</u>, in August 2016, due to a loose connection on a monitoring cable (down time ~ 2.10⁻⁵ and MTBF ~ 48 000 hours)
 ~ 1 module failure / year, without impact on the operation, thanks to the modularity and redundancy
 M. Diop, Workshop on Efficient RF Sources, July 2022 – Château de Bossey

Booster new SSPA's (2 x 60kW)

Booster RF system was originally designed for standard operation

The 35 kW amplifier drives a 5-cell copper cavity => V_{RF} = 1 MV (P_{diss} = 20 kW; P_{beam} = 5 kW \rightarrow P_{tot} = 25 kW)

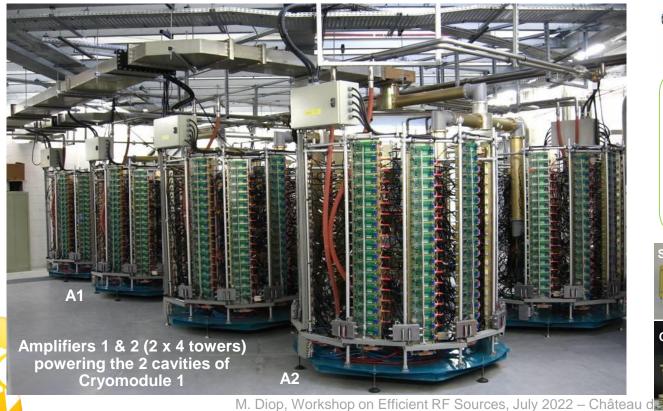
But low-*a* operating mode suffered from a low injection efficiency (15-20%) due to the long BO bunches

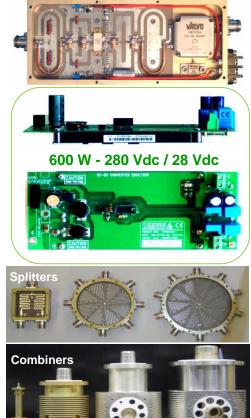
- \rightarrow Heavy safety radiation constraints
- \rightarrow Prevents more beam lines to join this operating mode

<u>**2**nd **RF** station</u> installed to increase V_{RF} from 1 MV up to 3 MV in winter 2017-2018

- Shorter bunch length \rightarrow SR injection efficiency improved by a factor of ~ 2 in low-a operation
 - Former spare cavity installed in one straight section of the Bo ring and powered with 60 kW (V_{RF} = 1.8 MV)
 - New 60 kW 352 MHz SSPA, identical to a standard tower of our SR amplifiers (10 dissipaters of 16 modules, built from 160 RF modules of 400 W with BLF574XR transistors and their dc-dc converters made available by the SR SSPA refurbishment)
 - SSPA and its associated LLRF & control (replica of the actual one) inside the Bo RF room
 - Increase V_{RF} of the existing plant from 1 MV up to 1.2 MV \rightarrow P_{RF} ~ 30 kW (P_{beam} ~ 0)

<u>Original 35 kW Booster SSA upgrade up to 60 kW</u> → increase total V_{RF} from 3 MV up to 3.6 MV in October 2019


'Upgraded' Low-a operating mode available for users
 with V_{RF} = 3.6 MV (SR injection efficiency = 35% instead of 18% before)
 + power savings and redundancy in all other operating modes


SOLEIL SR 180 kW SSPA's

Same principle as the BO one but extended to 4 towers of 45 kW:

- → 10 dissipaters of 18 modules per tower
- → 726 modules / amplifier x 4 cavities → 16 towers & ~ 3000 modules

LDMOS LR301 from POLYFET **P = 315 W, G = 13 dB, η = 62 %**

SR SSPA Control

	`		· · ·	,		·				`
Tower T4 of											
Fichier Edition Outils	51	52	52		DE	DC.	57	50	50	010	Amplifier 2
	D1 Preampli	D2 Preampli	D3 Preampli	D4	D5 Preampli	D6 Preampli	D7 Preampli	D8 Preampli	D9 Preampli	D10 Preampli	
SÖLEIL	7.00 6.40	0.00 0.00	6.40 7.40	0.00 0.00	6.50 6.30	0.00 0.00	6.60 7.00	0.00 0.00	6.80 6.80	0.00 0.00 MO	
SYNCHROTRON	7.40 7.50	7.30 7.40	7.10 7.10	7.10 7.10	7.00 7.10	7.20 7.20	7.00 6.90	7.40 7.50	7.20 7.30	7.20 7.20 M1	_
	6.90 7.00	7.20 7.30	7.10 7.20	6.70 6.70	7.20 7.30	6.60 6.70	6.40 6.40	7.40 7.40	7.30 7.30	7.10 7.30 M2	Тор
AMPLI 1 (T1)	7.10 7.20	7.20 7.20	6.80 6.90	7.00 7.00	7.00 7.20	7.30 7.30	7.10 7.40	7.40 7.30	7.10 7.30	7.30 7.20 M3	· ·
	7.00 6.90	7.20 7.30	6.90 0.00	6.90 7.00	7.10 7.10	7.10 7.10	7.00 7.00	7.30 7.40	7.10 7.30	7.30 7.40 M4	transistor
AMPLI 2 T2)	7.30 7.40	7.40 7.30	7.10 7.10	6.60 6.80	7.10 7.20	6.80 6.80	6.60 6.50	7.10 7.20	7.60 7.50	7.20 7.30 M5	currents
AMPLI 3 T3)	7.20 7.30	7.20 7.30	7.20 7.30	7.00 7.10	7.10 7.10	7.50 7.50	7.20 7.20	7.40 7.50	7.30 7.40	7.20 7.40 м6	Carronte
	7.20 7.20	7.20 7.40	7.10 7.10	7.00 7.00	7.10 7.20	7.00 6.90	6.90 6.90	7.10 7.20	7.40 7.40	7.10 7.10 M7	
AMPLI 4 (T4)	7.30 7.30	7.30 7.30	7.00 7.10	6.80 6.80	7.10 7.20	7.30 7.30	7.30 7.20	7.30 7.40	7.50 7.40	7.20 7.10 M8	
											Pi & Pr
	1.42 0.00	1.48 0.00	1.10 0.00	1.74 0.00	1.48 0.00	1.40 0.00	1.44 0.00	1.38 0.00	1.58 0.00	1.48 0.00 Pi/Pr	
											2.5 kW
Aquisition ON	1.44 0.00	1.62 0.00	1.66 0.06	1.60 0.12	1.34 0.02	1.42 0.08	1.54 0.10	1.48 0.08	1.62 0.08	1.54 0.04 Pi/Pr	aamhinar
	6.90 7.00	6.90 7.00	7.40 7.60	7.40 7.60	7.00 7.10	6.90 7.10	7.10 7.40	7.60 7.40	7.30 7.40	7.20 7.50 M8	combiner
Messages	7.10 7.20	6.50 7.70	7.60 7.50	7.40 7.50	6.90 6.90	6.80 6.90	7.30 7.40	7.40 7.20	7.40 7.40	7.20 7.20 M7	
DO	7.20 6.90	7.00 7.10	7.50 7.40	7.60 7.60	7.00 7.00	6.90 7.00	7.20 7.20	7.50 7.50	7.40 7.30	6.80 6.90 M6	
M1 🔽 0.30 0.30	7.00 7.10	6.80 6.90	7.60 7.60	7.60 7.50	7.00 7.10	6.90 6.90	7.20 7.20	7.40 7.40	7.30 7.20	7.40 7.30 M5	Bottom
10.50 0.60	7.20 7.30	6.90 7.00	7.40 7.60	7.60 6.70	7.10 7.20	7.00 7.10	6.80 6.90	7.10 7.30	7.30 7.30	7.30 7.40 M4	
^{M3} ☑ 1.20 1.30	7.10 7.20	7.30 7.30	7.30 7.40	7.50 7.50	6.90 6.80	6.50 6.60	7.10 7.20	7.40 7.40	7.20 7.10	7.40 7.30 M3	transistor
₩4 🔽 1.30 1.30	7.00 7.20	7.10 7.10	7.50 7.50	7.60 7.70	7.00 7.20	6.80 6.80	7.30 7.20	7.00 7.30	7.30 7.40	7.40 7.50 M2	currents
^{M5} 🔽 1.30 1.30	6.80 6.90	6.80 6.80	7.40 7.60	7.60 7.60	7.00 7.00	6.40 6.30	7.40 7.50	7.60 7.50	7.50 7.50	7.40 7.30 M1	Currents
^{M6} ☐ 0.00 0.00	0.00 0.00	7.10 6.60	0.00 0.00	7.20 6.40	0.00 0.00	6.70 6.00	0.00 0.00	7.10 6.60	0.00 0.00	7.30 6.60 M0	
	Preampli	Preampli	Preampli	Preampli	Preampli	Preampli	Preampli	Preampli	Preampli	Preampli	
					217-				-		
		AMPLI 2			200 -				- di		
Pi = 115.2	kW Pr=	= 1.8 kW	P Alim =	= 249.7 kW	175 - 음 150 -				III		
TOUR 1	TOUR 2	TOUR	з то	UR 4	Ê 125-				- 11111		
Pi = 27.80 kW				= 29.76 kW	9 100- 						
					- 문 75 - ♀ 50 -						
Pr = 0.58 kW	Pr = 0.30			= 0.58 kW	25 -						
Pdc = 62.34 k	W Pdc = 62.0	09 kW Pdc =	62.15 kW Pd	c = 63.07 kW	0	10 15 20 2	5 3.0 3.5 4.0 4	5 50 55 60	65 70 75 80	85 90 95 100	
Nombre de modules HS : 4 Courant (A)											

The failure rate of our original LR301 transistors remains significant ~ 3% a year.

<u>2 types of failures identified</u> : - Transistor breakdown

- Damaged soldering due to thermal fatigue

→ Module refurbishment from 2013 to 2020 (rate of 5 towers a year with SOLEIL staff + external resources)

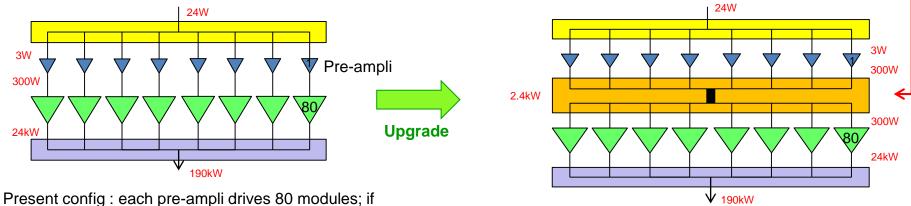
LR301 replacement by 6th generation <u>BLF574XR</u> ($V_d = 50V$ instead of 30V with better performances)

- More robust transistor and lower thermal stress \rightarrow longer lifetime \rightarrow less maintenance

\rightarrow failure of a single « new » transistor (~ 8 years of operation)

- +7 dB transistor gain \rightarrow 160 modules & their dc PS are got back for the new BO SSA
- P_{mod} increased : 315 W → 330 W for SR and 330W → 400W for BO
- Electrical power savings (<u>efficiency RF/DC: 48 % → 57%</u>) compensated the investment cost in < 3 years

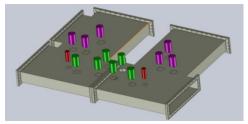
SSPA power increased from 180 to 200 kW

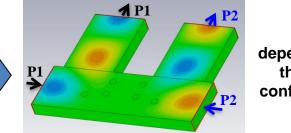

ightarrow More redundancy allowing to store full beam (500 mA) with 3 running SSPA's out of 4

one of them fails the amplifier is stopped

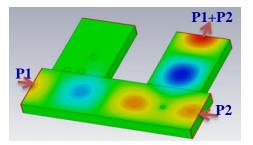
180 kW SSPA's Refurbishment

Thanks to the **combiner-divider**, the failure of a pre-ampli does not affect the functioning anymore

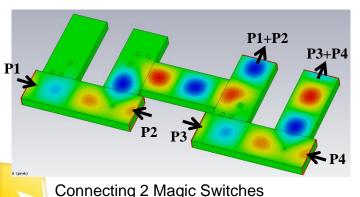

Modification of the 2.5 kW combiners (welded → screwed connections) to increase their power capability and robustness



Storing 450 mA using a single CM


<u>Modification of the waveguide network</u> to combine the power from two amplifiers into one cavity \rightarrow *Possibility of storing 450 mA using a single CM*

➤ « <u>Magic Switch</u> »



OR depending on the post configuration

Maurort

Waveguide network layout to power one or the other CM with 300 kW / cav from the 4 SSPA's, combined by pairs

The 2 Magic Switches implemented and waveguide distribution completed in end-2018

4 x 200 kW SSPA's -	Investment cost = $3 \text{ M} \in +350 \text{ k} \in \text{ for refurbishment}$ Operational cost = $400 \text{ k} \in \text{ per year } \rightarrow 6 \text{ M} \in \text{ from installation}$ Maintenance annual cost = $5 \text{ k} \in$
---------------------	---

MTBF & beam downtime, cumulated by the 4 SR SSPA's over ~ 95 000 running hours in ~ 15 years

Equipment	MTBF	Downtime	Comments
a) 4 x RF amplifiers	~ 13 500 h	~ 8.10 ⁻⁵	Failures from preamplifiers and 1 st stage combiners (solved) + supervision issues
b) 4 x Power supply 500 kVA thyristor- based with 680 DC/DC converters	~ 6 300 h	~ 3.10 ⁻⁴	Single rectifier per amplifier + aging DC/DC converters
a) + b) 4 x RF transmitters	~ 4 300 h	~ 4.10 ⁻⁴	

Already excellent MTBF and operational avaibility, but still perfectible by :

- 1) Providing some more redundancy in the ac-dc power conversion, which originally consists in a single 500 kW rectifier per SSPA and DC/DC converters
- 2) Upgrading the amplifier supervision system
- → Cures for these "weaknesses" in our new design

<u>Rectifier + DC/DC converters replacement by direct AC/DC converters</u>

- → **Redundancy**, easy maintenance, reduced time to repair, solved obsolescence issues and cost reduction
- → Efficiency improvement

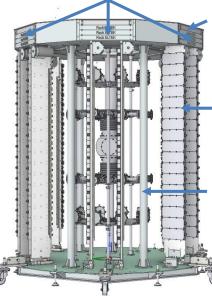
Total actual efficiency = 87% (96% rectifier and 90% DC/DC converters)

Increased to 96% with new AC/DC converters

→ AC/DC converter voltage remote control allows to match for maximum efficiency over whole power range (impossible presently: components set to reach max efficiency only at max power – 1dB compression)

Power supply upgrade plan

From mid-2023, 1 x 50 kW will be installed every 2-3 months in the SR to benefit from four fully upgraded 200 kW SSA'S by the end of 2026 for SOLEIL Upgrade



Power Supply Upgrade

8 x 3 kW power converters

5 x 24 kW AC/DC racks (19" 3U)

5 x SSA control rack (19" 1U)

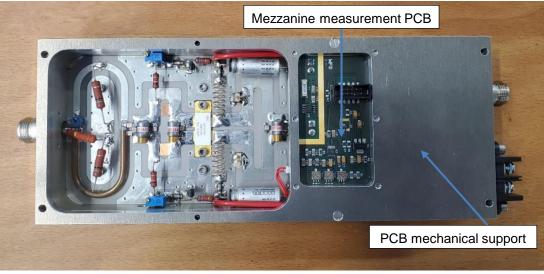
New dissipater orientation to optimize and reduce power cable length

Support pipes with bigger diameter, adapted to the new power supply weight

3D view of a future upgraded SSA RF tower with new AC/DC power converters

Beam current	450 mA	500 mA
RF power into the beam	506 kW	562 kW
Electrical power (4 SSA's + rectifiers and converters in present SOLEIL machine)	1148 kW	1278 kW
Electrical power (4 upgraded SSA's @ 50 V)	1019 kW	1081 kW
Electrical power (4 upgraded SSA's @ 44 V)	894 kW	952 kW
Maximum consomption reduction (44 V)	22.1%	25.5%

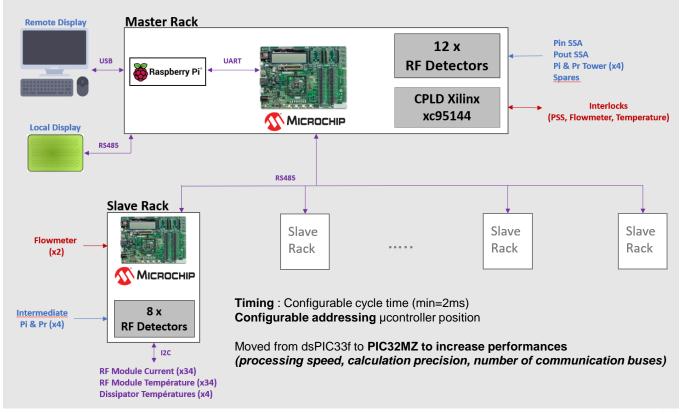
- Power savings of 1.75 GWh max per year
- > 130 k€ savings per year


Compensate the investment cost in ~ 6 years

Current measurements were initially done in the DC/DC converter.

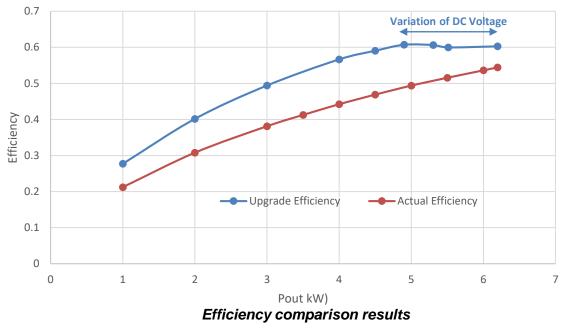
New architecture \rightarrow RF module modifications :

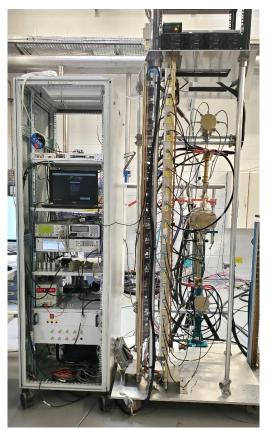
- Electronic mezzanine card for supervision (1 x T° sensor on circulator load to evaluate reflected power + 1 current sensor)
- + T° sensor on the dissipater (interlock purpose)



Upgrade of the SSA supervision system

<u>Architecture modification</u> : Single µcontroller for 1 complete amplifier → 1 "slave" ucontroller for 2 dissipaters + 1 "master" for the complete amplifier


SYNCHROTRON


Power Supply and supervision system Upgrade

6 kW prototype test

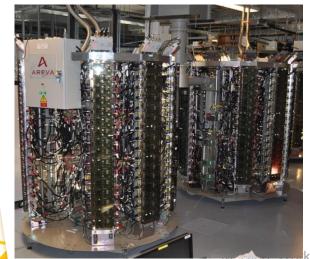
Next steps

- > 60 kW prototype mounting and tests September 2022
- Implementation in present SOLEIL Booster October 2022
- > 2nd Booster SSA installation January 2023

6 kW prototype test stand

SOLEIL SSPA R&D SCIENTIFIC COLLABORATIONS AND TECHNOLOGY TRANSFERS

SOLEIL R&D with 352 MHz SSPA's


Development of new RF modules, based on 6^{th} generation LDMOS (Vd = 50V)

 \rightarrow P_{mod} ~ 700 W, G ~ 20 dB, η > 70% at 352 MHz

[With original LR301 (28V), P_{mod} = 315 W, G = 13 dB, η = 62 % @ 352 MHz]

→ Huge improvement : $P_{mod} \times 2.2$, better performance (G, η, linearity) & strong reduction in thermal stress (ΔT : - 60 °C) → longer lifetime

ESRF project of partly replacing its 1 MW klystrons by 150 kW SSPA's (1 per cavity) → 2009, SOLEIL transfer of technology with ELTA-AREVA → 7 SSPA's of 150 kW, built by ELTA under SOLEIL license

ESRF 150 kW 352 MHz SSPA from ELTA/SOLEIL 2 towers of 75 kW ↔ 260 RF modules of 700 W

<u>BO</u> : 4 x 150 kW SSPA's in use since 2012 <u>SR</u> : 2 x 150 kW SSPA's in use since 2013 BO + SR : ~ 1 820 transistors

> **<u>DC-to-RF efficiency of 58%</u>**, dc-dc converters included With new ac-dc converters $\rightarrow \eta$ (overall ac to RF) > 60%

LNLS - SOLEIL Collaboration

Two SSPA's of 50 kW @ 476 MHz for LNLS (Brazilian LS) SR * with components designed by SOLEIL (400 W modules with BLF574)

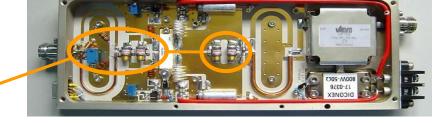


April 2010 in Campinas-Brazil : the SOLEIL - LNLS team, after successful tests of the amplifiers

* A 2.5 kW 476 MHz SSA had already been built for the LNLS Booster

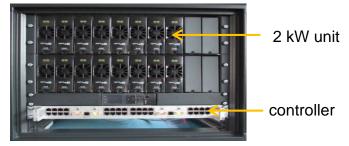
LNLS - SOLEIL Collaboration

The two 50 kW SSPA's of the LNLS SR have run satisfactorily for > 10 years → Use of SSPA's @ 500 MHz at SIRIUS


R&D with 500 MHz SSPA at SOLEIL

Experience feedback \rightarrow

Increase effort on the modularity/redundancy and the efficiency *
 Moderate power for long lifetime (thermal stress → soldering degradation)


* + 10 pts in efficiency lead to electrical power savings over 10 years of operation \approx full amplifier cost

- New 650 W 500 MHz modules using 6th generation (Vd : 50V) LDMOS BLF578 from NXP
 - ✤ RF output power, P_n: 650 W CW
 - ✤ Input return loss : 40 dB at P_n
 - ✤ Unconditional stability (K >10 dB)
 - Gain : 17 dB at P_n (1 dB compression)
 - Efficiency \approx 62 % at P_n
 - ✤ Gain dispersion : +/- 0.2 dB at P_n
 - ♦ Phase dispersion : +/- 5° at P_n

Mandatory for good combining efficiency \rightarrow Components for gain and phase adjustments

- Modular dc-dc converters + single power rectifier replaced by modular 230 V_{ac} / 50 V_{dc} converters, in 2 kW units, 96% efficiency, voltage remote control
 - → optimized efficiency for any operating power : 56% (overall) @ P_{max} and 50% @ 0.6 P_{max}

Modularity brought in the preamplification stage by inserting the « divider-combiner » M. Diop, Workshop on Efficient RF Sources, July 2022 – Château de Bossey

500 MHz SSPA for THOMX⁽¹⁾ and SESAME⁽²⁾

⁽¹⁾ ThomX : Compton X-ray source under construction in Orsay, France ⁽²⁾ SESAME : Jordan Synchrotron light source

ThomX 50 kW SSPA (6 x 16 RF modules + 3 x 15 PS)

- Fully modular 50V power supplies
 230 V_{ac} / 50 V_{dc} converters,
 in 2 kW units, 96% efficiency, with
 voltage remote control for efficiency
 optimization
- <u>Change from the tower to cabinet</u> assembly, better suited with the new power supplies
- <u>Control upgrade</u> → stand-alone, self-protected and more modular (1 µcontroler per dissipater)

SESAME 80 kW SSPA (10 x 16 RF modules + 5 x 16 PS)

- ✓ For SESAME SR : 4 x 80 kW SSPA → 1st one built by SOLEIL as a demonstrator
 → 3 others on the same model by SigmaPhi Electronics (former SOLEIL licensee)
 <u>Status</u> : all in operation (first pair since end 2016 and 2nd one since May 2017)
 - **The ThomX 50 kW SSPA is also completed and commissioned** M. Diop, Workshop on Efficient RF Sources, July 2022 – Château de Bossey

RF Power Source requirements for LUCRECE* : 20 kW CW SSPA @ 1.3 GHz

- * RF R&D program for the French FEL project LUNEX5
- Comparison between GaN and LDMOS technology

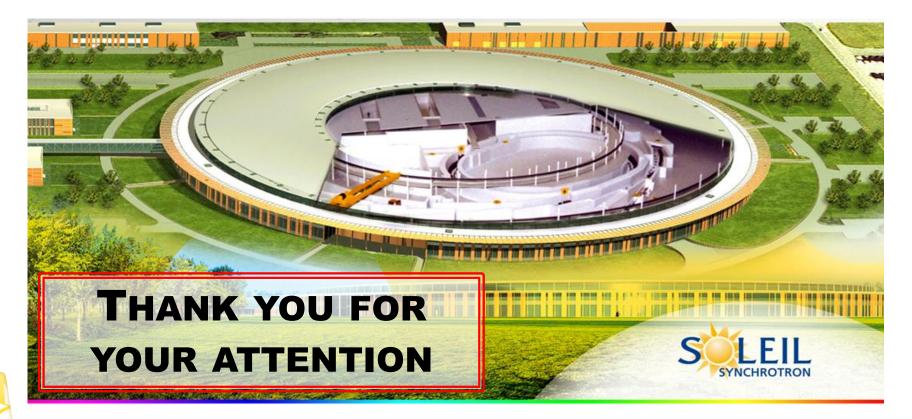
Transistor performance measurements in CW mode

	Old Gen GaN	Old Gen GaN	New Gen LDMOS	New Gen GaN
V _d (V)	50	50	50	50 (65Vpulse)
P _{out} (W @ 1 dB comp.)	71.2	150.2	700	400
P _{out} (W @ 3 dB comp.)	425.9	430.9	х	1000
Gain (dB)	14.11	18.33	18.16	17
Efficiency (%)	55.6	65	62	71

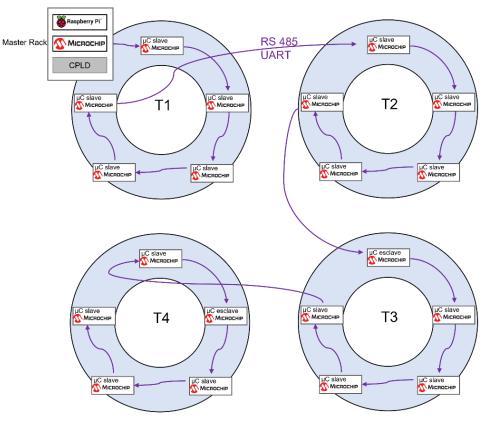
X: not measured

R&D @ 1.4 GHz

On going tests at 40V to limit dissipated power on the dice \rightarrow 740W at 3dB comp. with 65% efficiency and expected to go up to 900W


Perspective : Possible adaptation of LUCRECE SSPA for SOLEIL Upgrade if the harmonic system is active (1.41 GHz)

- SOLEIL has pioneered the use of SSPA's in particle accelerators Original home-made design (35 kW in the BO and 4 x 180 kW in the SR) has operated for about 15 years with outstanding operational MTBF >> 1 year
- **BORF upgrade** : \rightarrow 2 RF plants with 60 kW SSPAs \rightarrow Redundancy + SR injection efficiency improvement in low-a operating mode (~ factor of 2)
- **SR SSPA refurbishment** : in 2013, start of original transistor replacement by 6th generation LDMOS $(V_d = 50 \text{ V} \text{ instead of } 30 \text{ V})$, much more robust and with higher gain and efficiency \rightarrow Drastic reduction in module failures, higher power capabilities and efficiency + available components for the new 60 kW BO SSPA
- □ SR SSPA refurbishment + "Magic switches" (+ Upgraded cavity couplers) \rightarrow Additional redundancy Possibility to store I_{beam} using either a single CM (450 mA) or 2 CMs (500 mA) with only 3 running amplifiers/cavities
- □ SOLEIL R&D on SSPA \rightarrow improvement of the original design in **compactness**, reliability and efficiency Overall (plug to RF) efficiency ~ 60% at 352 MHz or lower frequencies, ~ 56% at 500 MHz and ~ 50% at 1.3 – 1.4 GHz


Scientific collaborations & technology transfers to the industry (ESRF, LNLS, ThomX, SESAME, LUCRECE, ...) M. Diop, Workshop on Efficient RF Sources, July 2022 – Château de Bossey

SOLEIL SSA supervision system principle

Backup slides

SOLEIL Upgrade Parameters

	4 (3) NC cavities ESRF-EBS		
Length [m]	~ 4.20		
Redundancy	Yes		
V _{RF} [MV]	1.8		
P _b [kW]	362		
V _{cav} [kV]	450 (600)		
P _{dis} [kW]	4 x 20 (3 × 36)		
P _{cav} [kW]	111 (157)		
P _{RF} [kW]	444 (471)		
Coupling	ß _c = 5		
Z _{HOM}	TBD		

SOLEIL Upgrade Parameters	V0356 lattice version
Circumference, L [m]	354
Energy, E _n [GeV]	2.75
RF frequency, f _{RF} [MHz]	352
Max beam current, I_b [mA]	500
Energy loss per turn, dU [keV]	722.5 [‡]
RF power into the beam, P_b [kW]	362
Overall RF voltage, V _{RF} [kV]	1800
Cavity voltage, V _{cav} [kV]	650
Coupling factor, ßշ	5
Energy spread, s _E / E	0.9 10 ⁻³ *
Momentum compaction factor, α	1.05 10 ⁻⁴
Emittance, e _x /e _z [pm.rad]	84 / 25 ; 55 / 55 *
RF energy acceptance, (DE / E) _{RF}	7.7 10 ⁻²
Longitudinal damping time, t_s [ms]	12.2 *
Transverse damping times, t_x / t_z [ms]	7.7 / 14.4 *
Synchrotron frequency, f _s [kHz]	1.78
Natural RMS bunch length, s_s [ps]	8.5
 Including 264 keV for the ID's * Without ID's contribution 	