Czech Group in DØ Top Physics

Jiří Kvita

Charles University, Prague

BA Top Meeting, Jan 2007

Jiří Kvita (Charles University, Prague)

Czech Group in DØ Top Physics

Outline

- Overview of Czech Group Top Activities at the DØ.
- My Thesis Status and Plans.

- Disclaimer:
 - I do not attempt to provide an overview of Top Physics at the DØ experiment.
 - I do not aspire on describing all activities we take part in.
 - I would like to share ideas and give some impression on what we study.

2 / 21

Czech Group at the DØ

- Top quark as the heaviest elementary particle provides a unique window to precision tests of Quantum Chromodynamics.
- Historically, there is a tradition in $t\bar{t}$ multijet channel (K. Soustružník, Run I thesis).
- This is being continued at Run II (with P. Vokáč), in cross section and mass analyses.
- I am interested in kinematics of the $t\bar{t}$ system in l+jets channel.
- Our service work activities for the experiment follow our physics interests: multijet triggers (K.S.), Jet Vertex Confirmation (P.V.), Jet Energy Scale (J.K.).
- DØ works on analyses measuring the cross section, mass, W helicity in $t\bar{t}$, Top charge, Branching ratios...
- Last but not least, there is EW Single Top Production, see public DØ Top page for latest results.

DØ Multijet Analysis (M. Begel)

The light jets invariant mass distribution m_{jj}.

- Invariant mass of a b-jet and two light jets m_{bjj}.
- Preselected Data with overlaid expected Background.
- All *b*-jets assignment respecting permutations included.

Jiří Kvita (Charles University, Prague)

Czech Group in DØ Top Physics

Kinematics in $t\bar{t} \ l+jets$ Channel

- The aim is to measure a differential distribution like Top p_T or Δφ between the two Top quarks.
- Motivations are several: test top QCD production, its EW decay, look for deviations, compare to theory, measure something differential in tt, have some fun, make a thesis out of it...
- *l*+jets channel most suitable: clean, with distinct signature (isolated high-*p_T* lepton, large missing transverse energy).

Top Pair Decay Channels

Kinematical Fitter

- Objects as seen by the detector have mismeasured properties, calibrated to proper scales only on average.
- Dedicated event-by-event fitting can improve our resolution, account for fluctuations and solve kinematics for unknown variables (neutrinos).
- A simple χ^2 -like expression (mass constraints) is used in the minimisation process.

$$\chi^2 \equiv \frac{(M_{W1} - M_W)^2}{\sigma_W^2} + \frac{(M_{W2} - M_W)^2}{\sigma_W^2} + \frac{(M_{t_2} - M_{t_1})^2}{\sigma_t^2}$$

- An iterative kinematical fitter is applied to adjust measured objects' fourmomenta.
- Results are several fitted permutations ordered in their χ^2 's.
- Fitter written by Scott Stuart Snyder (Stonybrook).

Czech Group in DØ Top Physics

6 / 21

Ensemble Tests using Toy MC

- Unconstrained Top Mass, constrained $m_W = 80.4 \, \text{GeV}$.
- Look at generated mass, then at combined mean from smeared objects.
- Look at HitFit : Use all permutations, best one, weighted by $\exp{[-\chi^2/2]}>10^{-3},$ the one matched to generated.
- Study HitFit performance, Study Toy MC performance.
- 40 ensembles per $m_t \in$ 160, 165, 170, 175, 180, 185, 190 GeV.
- Look at:
 - Best χ^2 solution
 - Combine all permutations
 - Weight using fit χ^2 : $w = \exp{[-\chi^2/2]}$.
 - Look at the fit result matched in each object $\Delta \mathcal{R}=0.1$ to the input.

Mass Calibration Curves, Toy MC

• Look simply at means of mass distributions over ensembles.

HitFit Efficiencies and Controls

- Study how often HitFit converges
- How often is a fitted permutation matched to the generated one within 0.1 in $\Delta \mathcal{R}$ for every jet/lepton.
- How often is the best χ^2 permutation matched this way.

channel	HF OK	Found Matched	best χ^2 Perm. Matched
e+jets	$\approx 95\%$	98%	48%
alljets	\approx 75%	85%	22%

Fitter Check on Top Mass - 1 fb⁻¹ Preselected Data

Toy Monte Carlo - Purpose and Idea

- The aim is to have a simple, quick, but still realistic tool to investigata basic properties of six objects coming from cascade decays of the original System.
- The tt
 system is very complicated, and one has to look at all possible correlations, like b-jet p_T versus Top p_T, angular correlations (ΔR in η × φ space) etc.
- The goal is to get some feeling of the system, distinguish what features are simple kinematics and cascade decay effects, and what could be signs of new physics.
- Employ momentum conservation and realistic spectra, decay system to top quarks, these to W+b, and finally also decay W's.
- Smear according to resolutions measured in Data.

Toy MC Generation Features I

- Generate $t\bar{t}$ System with realistic $p_{\rm T}$, η and Mass spectra, ϕ uniform.
- **Decay it to** $t\bar{t}$, use Breit-Wigner's for Top's: ($\Gamma_t = 1.4 \text{ GeV}$), within 10 Γ_t 's around pole (generation speed up:).
- Decay each top to W + b, use Breit-Wigner's for W's ($\Gamma_W = 2.12 \text{ GeV}$), within 10 Γ_W 's around pole.
- Flavours: 50% : 50% $W^+ \rightarrow \bar{u}d$: $\bar{c}s$ (for future c jet resolutions:-)
- Generate estimated number of signal *l*+jets untagged events, smear requested number of events by a Poisson.
- Cuts: p_T cuts of Jets, Lepton and MET > 20 GeV, $|\eta|$ cuts of 2.5 and 2.0 for Jets and Lepton \Rightarrow Shapes the Phase Space!
- Convention: Top1=Leptonic, Top2=Hadronic.

Toy MC Generation Features II

- Isotropic decays except for: System $\rightarrow t\bar{t}$ (I take LO $q\bar{q} \rightarrow t\bar{t}$ Matrix element $\cos \theta^*$ spectrum). Also, system η spectrum taken loosely from my p14 MC results.
- Jet, Lepton momentum smearing Data Resolutions.
- Neutrino (missing energy) smeared as a jet at the moment.
- Smear also jet and lepton angles,
- No *b*-tagging simulation yet.
- Combine smeared objects and look at Top Mass, p_{T} , $t\bar{t}$ System. . .
- Plugging-in finite $\sigma_{\eta} = 0.05$ and $\sigma_{\phi} = 0.05$ for jets changed hadronic top mass (correct permutations only) from 15 to 20 GeV!

Generated $t\bar{t}$ System, e+jets

۲

Smeared (\equiv Combined, After Cuts) $t\bar{t}$ System, e+jets

٢

$t\bar{t}$ System Studies

Toy MC, Fitted Leptonic Top

Jiří Kvita (Charles University, Prague)

Czech Group in DØ Top Physics

- Top1

- Top1Combined

- HitRAIChi2Tco1

- HitlitChi2WeightTo

HitlitBestChi2Top

17 / 21

Measuring Some Spectrum

- Apply preselection, use the kinematical fitter, plot the differential distribution (need to decide how to use *b*-tagging for the fitter).
- This contains several backgrounds: Physics and Combinatorial.
- Use Matrix Method to subtract QCD shape, use measured/theory cross section to get number of W+jets and subtract their shape (matched Alpgen, for each flavour). Thus we will depend on MC modelling via BG templates.
- Next, we have to subtract Combinatorial BG in the signal only distribution. Again, Signal MC inevitable:
 - Look at distribution of HitFit permutation not matched to MC Reco).
 - Use MC@NLO (better description), smear by toy MC, compare to data.
 - In fact, before any subtraction we should first simply add standard BG's and signal MC and compare to data.
- We should be left with Signal, correct combination distribution.

Corrections to the Raw Spectrum

- Next step is to correct for the differential acceptance (effect of preselection cuts).
 - Kinematical cuts (p_T, η, \dots)
 - *b*-tagging efficiency.
 - More complicated $(\Delta \phi)$.
- There is also effect of HitFit: what is the topology of events for which it does not converge? (efficiency is about 95%)
- We may or may not constrain the Top Mass (resolution on other quantities reportedly better with constrained).
- To compare to theory, one has to unsmear:
 - Use dOgstar MC, determine the correction between particle-Reco levels.
 - Use toy MC with arbitrary (parametrised) injected spestrum, use measured resolutions to smear, compare to measured spectrum, iterate.
 - Use e.g. MC@NLO input for toy, smear it, determine the correction.
 - Derive an effective top $p_{\rm T}$ resolution in MC (like dijet JER).

Toy MO

300pb Data, Old Results

Jiří Kvita (Charles University, Prague)

20 / 21

Outlook

• $t\bar{t}$ Physics is a Landscape to Explore (Preselected Data).

