Influence of gravitons on top quark production at the LHC

Karel Smolek

Czech Technical University in Prague Institute of Experimental and Applied Physics Czech Republic

Masato Arai, Nobuchika Okada, Vladislav Simak

Content

- Basic facts about the top quark
- Spin properties of the top quark (polarization, spin correlation)
- Top production in theories with extra dimensions
 - ✓ ADD model
 - ✓ Randal-Sundrum model
- Top production in Randa-Sundrum scenario predictions for the LHC
- Conclusion

Top quark

- The heaviest quark of the Standard Model.
- High mass: 175 GeV (as the atom of gold).

LHC: Proton-proton interactions with CMS energy 14 TeV The most of the top quarks produced in top-antitop pairs

gluon-gluon fusion (87 %)

quark-antiquark annihilation (13 %)

~10·10⁶ pairs/year

- Observed in 1995 in Fermilab (produced ~200 pairs).
- Lifetime: 10⁻²⁴ s -> does not hadronise, the angular distribution of decay products is influenced by the spin properties of *t* quark.
- The only one quark, where we can study its spin properties.
- Spin properties of *t* quarks sensitive to some effects beyond the Standard Model.

31st January 2007 Karel Smolek 3/19

Decay of top quark

Polarization of the top quark

It is possible to study the polarization of the top quark using the decay products:

$$\frac{1}{N}\frac{dN}{d\cos\theta_f} = \frac{1}{2}(1 + \alpha_f \cos\theta_f)$$

The angle between the direction of movement of particle *f* in the top rest frame and the direction of top quark spin.

-0.41 for b 0.41 for W⁺ 0.35 for jet **1.0** for e⁺, μ⁺

- At LHC, the top (antitop) quarks are produced (in a good approximation) as the helicity eigen-states.
- The top and antitop quarks are produced as unpolarized the same number of left- and right-handed top quarks.

Spin correlation of top-antitop pairs

The number of top-antitop pairs with the same and opposite helicity is not the same.

$$A = 4 \langle (\hat{\mathbf{p}}_{t} \cdot \mathbf{S}_{t}) (\hat{\mathbf{p}}_{\overline{t}} \cdot \mathbf{S}_{\overline{t}}) \rangle$$

$$= \frac{\sigma(t_{\uparrow} \overline{t}_{\uparrow}) + \sigma(t_{\downarrow} \overline{t}_{\downarrow}) - \sigma(t_{\uparrow} \overline{t}_{\downarrow}) - \sigma(t_{\downarrow} \overline{t}_{\uparrow})}{\sigma(t_{\uparrow} \overline{t}_{\uparrow}) + \sigma(t_{\downarrow} \overline{t}_{\downarrow}) + \sigma(t_{\uparrow} \overline{t}_{\downarrow}) + \sigma(t_{\downarrow} \overline{t}_{\uparrow})}$$

$$= 1 - 2 \frac{\sigma(t_{\uparrow} \overline{t}_{\downarrow}) + \sigma(t_{\downarrow} \overline{t}_{\uparrow})}{\sigma(t_{\uparrow} \overline{t}_{\uparrow}) + \sigma(t_{\downarrow} \overline{t}_{\uparrow})} \neq 0$$

Fraction of top-antitop pairs with the opposite helicities

SM prediction:

$$A = 0.319$$

• If the top quark is coupled to a new physics beyond the SM, the top-antitop spin correlation could be altered.

How to measure spin correlation

The double differential angular distribution of top and anti-top decay products:

$$\frac{1}{N} \frac{d^2N}{d\cos\theta_f d\cos\theta_{\bar{f}}} = \frac{1}{4} (1 - A |\alpha_f \alpha_{\bar{f}}| \cos\theta_f \cos\theta_{\bar{f}})$$
=1 for double-lepton channel

The best statistical unbiased estimator:

$$A = -9 < \cos \theta_f \cos \theta_{\bar{f}} >$$

$$A = 0.319$$

31st January 2007 Karel Smolek 7/19

Measurement of top spin correlation

In the ATLAS experiment:

- F. Hubaut, E. Monnier, P. Pralavorio, K. Smolek, V. Šimák: *ATLAS* sensitivity to top quark and W boson polarization in ttbar events, Eur.Phys.J. C44 (2005) 13-33.
- Semileptonic and dileptonic top-antitop channel.

• At the LHC, it is possible to increase the assymetry by applying an upper cut on the top-antitop invariant mass:

$$M_{t\bar{t}} < 550 \ GeV/c^2$$

$$A = 0.422$$

• Combining the results of both channels allows to measure the SM spin correlation *A* with a 3% precision for 10 fb⁻¹.

Top quarks in theories with extra dimensions

- We studied two brane world scenarios:
 - ✓ ADD (Arkani-Hamed, Dimopoulos, Dvali)
 - √ RS I (Randal, Sundrum)
- Kaluza-Klein states of gravitons can contribute to the top-antitop production.

SM contribution

KK states contribution

• KK gravitons can give rise to characteristic angular distributions and spin configurations of outgoing particles, which reflect the spin-2 nature of KK gravitons.

ADD model with large extra dimensions

- Theory with n extra-dimensions compactified with large radii.
- N. Arkani-Hamed, et al, PLB429 (1998) 263, hep-ph/9803315
- I. Antoniadis, et al, PLB436 (1998) 257, hep-ph/9804398
- n-extra dimensions are compactified on n-torus with common radius R
- D3-brane is embedded in 4+n dimensional bulk

$$M_{PL}^{2} = M_{D}^{n+2} R^{n}$$

 M_{D}^{-} low-energy effective string scale (~ 1 TeV for R ~ 1 mm, n = 2)

31st January 2007 Karel Smolek 10/19

Top production in ADD model

- We computed full density matrix for top-antitop production.
- We studied spin correlation of top-antitop in ADD model.
- M. Arai, N. Okada, K. Smolek, V. Šimák: Phys.Rev. D70 (2004) 115015

- $\lambda=\pm 1$ connected to the regularization procedure for the contributions from the infinite number of KK gravitons. λ represents the sign of the interference term between SM and ADD contribution in the $gg\to t\bar t$ process.
- A sizable deviation of the top spin correlations from the SM one can be visible for the scale M_D below 2 TeV.

31st January 2007 Karel Smolek 11/19

Randal-Sundrum scenario

• In ADD scenario, the energy density of brane (gravitational field that brane produces) is ignored.

RS scenario (Randall, Sundrum, PRL83 (1999) 3370; 4690):

- 5 dimensional theory.
- Warped extra dimension. 5th dimension is compactified with orbifold symmetry.
- M. Arai, N. Okada, K. Smolek, V. Šimák: hep-ph/0701155

31st January 2007 Karel Smolek 12/19

Randal-Sundrum scenario

The effective interaction Lagrangian:

$$\mathcal{L}_{\text{int}} = -\frac{1}{\bar{M}_{\text{pl}}} T^{\mu\nu}(x) h_{\mu\nu}^{(0)}(x) - \frac{1}{\Lambda_{\pi}} T^{\mu\nu}(x) \sum_{n=1}^{\infty} h_{\mu\nu}^{(n)}(x) ,$$

- $h_{\mu\nu}^{(n)}$ n-th graviton KK mode $T^{\mu\nu}$ energy-momentum tensor of SM fields on the visible brane
- Sum of all intermediate KK gravitons gives a finite value.
- The graviton zero mode couples with the usual strengts -> negligible effect.
- Each KK graviton strongly couples to SM fields with Λ_{π} suppressed couplings.

$$\Lambda_{\pi} = e^{-\kappa r_c \pi} \bar{M}_{\rm pl} = \frac{m_1}{x_1} \left(\frac{\bar{M}_{\rm pl}}{\kappa} \right) \sim {\rm TeV}$$

 κ - 5-dimensional curvature

• For $\kappa r_c \simeq 12$, $\Lambda_\pi = \mathcal{O}(1 \text{ TeV})$ and give a natural solution to the gauge hierarchy problem.

31st January 2007 Karel Smolek 13/19

Randal-Sundrum scenario

Mass spectrum of gravitons

$$m_n = \kappa x_n e^{\kappa r_c \pi} = m_1 \frac{x_n}{x_1}$$

 x_n - roots of the Bessel function of the first order (x_1 = 3.83, x_2 = 7.02,...)

- We can expect a resonant production of KK gravitons at colliders.
- The resonance gives rise to an enhancement of production of the top-antitop pairs and provide a big statistical advantage for studying the top spin correlations around the resonance pole.
- In our analysis we used:
 - $\sim m_1 = 600 \text{ GeV/c}^2$ $m_1 \geq 600 \text{ GeV/c}^2 \text{ from D0 experiment}$
 - $\sqrt{\frac{\kappa}{\bar{M}_{
 m pl}}}=0.1$ (0.2, 0.3, 0.4, 0.5) guarantees the perturbation of the graviton
 - $✓ m_t = 175 \text{ GeV/c}^2$
 - ✓ PDF CTEQ5M1

The dependance of the cross section of the top-antitop quark pair production by quark annihilation and gluon fusion on the CMS energy of colliding partons.

31st January 2007 Karel Smolek 15/19

Total differential cross section $\frac{d\sigma_{tot}(pp\to t\bar{t})}{d\sqrt{\hat{s}}}$ as a function of the CMS energy of colliding partons.

Resonant production of the KK gravitons give rise to an enhancement of the deviations from the SM.

31st January 2007 Karel Smolek

Spin asymmetry A as a function of the CMS energy of colliding partons.

Resonant production of the KK gravitons give rise to an enhancement of the deviations from the SM.

31st January 2007 Karel Smolek 17/19

31st January 2007 Karel Smolek 18/19

Conclusions

- Because of its high mass, the top quark is an ideal place to search for physics beyond the SM.
- The ADD model with large extra dimensions or RS model is an example of such physics.
- In addition to cross section and various kinematical distributions, the spin correlation is sensitive to the existence extra dimensions.
- We studied in detail the production of top-antitop quarks at LHC for the RS scenario.
- The influence of gravitons in the RS model on the spin correlation of topantitop quarks could be visible at the LHC.
- Resonant production of the KK gravitons give rise to a remarkable enhancement of the deviations from the SM. This is a crucial difference from the case in the ADD model.
- M. Arai, N. Okada, K. Smolek, V. Šimák: Phys.Rev. D70 (2004) 115015
- M. Arai, N. Okada, K. Smolek, V. Šimák: hep-ph/0701155