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RECOMMENDED BOOKS

I M. P. Hobson, “General Relativity”. My very first choice for a first take on black hole
space-times.

I T. Padmanabhan, “Gravitation”. A complementary choice to Hobson’s including topics off
the mainstream.

I R. M. Wald, “General Relativity”. An old but never outdated reference from a well posed
mathematical formulation of physical principles.

I S. Chandrasekhar, “The mathematical theory of black holes”. Old classics die hard.
I P. S. Joshi, “Gravitational collapse”. The title is informative enough.
I T. Ortı́n, “Gravity and Strings”, Chapters 7, 8, 9. Ortin’s stringy viewpoints are never to be

dismissed.
I M. Maggiore, “Gravitational wave: volumes 1 and 2”. A gargantuan effort to summarize

theory and observations on GWs from black holes.
I M. Visser, “Lorenztian wormholes”. For a detailed account on wormholes.
I E. Curiel: Singularities and black holes, Stanford Encyclopedia of Philosophy,

https://plato.stanford.edu/entries/spacetime-singularities/ . A full conceptual take on
space-time singularities to reconcile yourself with philosophers.

I E. N. Saridakis (Ed.), “Modified gravity and Cosmology: an updated by the CANTATA
Network”. An update on the phenomenology of modified gravity including many
applications.
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LESSON 0: SOME PRELIMINARY MATHEMATICAL CONCEPTS

Diego Rubiera-Garcia Complutense University of Madrid, Spain drubiera@ucm.esElementary and advanced black hole physics: a modern practitioner’s guide.



Main definitions

I In a differentiable manifold M one can define vectors

v =
n

∑
µ=1

vµxµ (1)

where xµ is a coordinate basis.
I In particular, the components of the tangent vector to a curve γ are written as

T µ =
dxµ

dt
(2)

I A covariant derivative is defined as a derivative satisfying certain properties (linearity,
Leibnitz rule, commutativity with contraction, torsion-free). For a tensor field it reads
explicitly

∇aT b1 ...bk
c1 ...cl = ∂aT b1...bk

c1...cl +∑
i

Cbi
ad T b1...d ...bk

c1 ...cl −∑
j

Cd
aj T

b1 ...bl
c1...d ...cl

(3)

For a vector field we have
∇atb = ∂atb + Γb

ac tc (4)

where Γb
ac are the components of the affine connection.

I Interpretation: there is no way of determining whether a tangent vector at p is “the same”
as a tangent vector at q. We need an additional notion of “parallel transport” of vectors
from p to q along a curve joining these points. The covariant derivative.
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Geodesics

I A geodesic is a curve whose tangent vector is parallel-transported along itself. That is,
ta∇avb = 0. It is the “straightest” possible curve. In a coordinate system:
ta∂avb + taΓb

acvc = 0, which in terms of components reads

dvν

dλ
+∑

µ,γ
tµΓν

µγv γ = 0 (5)

Choosing vν = dxµ

dλ
, where λ parameterizes the curve, one has

d2xν

dλ2 +∑
µ,γ

Γν
µγ

dxµ

dλ

dxγ

dλ
= 0 (6)

I How can we fix the connection?. We bring in the metric tensor, which is defined via

ds2 =
n

∑
µ,ν=1

gµνdxµdxν (7)

I If we demand the inner product gabvawb to remain unchanged as we parallel-transport
them along the curve, one gets the metric-connection compatibility condition

∇agbc = 0 (8)

Exercise: From this condition derive the form of the Christoffel symbols Γc
ad (hint: use

the definition of covariant derivative and cycle three times the indexes):

Γc
ad =

1
2

gcd (∂agbd + ∂bgad −∂d gab) (9)
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Basic geometrical objects

I A spacetime is a pair (M ,gµν), where M is a connected 4-dimensional Hausdorr C∞

manifold with a Lorentz metric gµν defined on M .
I Riemann tensor

Rα
βµν = ∂µΓα

νβ
−∂νΓα

µβ
+ Γα

µλ
Γλ

νβ
−Γα

νλ
Γλ

νβ
(10)

I Ricci tensor (assumed to be symmetric)

Rµν ≡ Rα
µαν (11)

I Curvature scalar
R ≡ gµνRµν (12)

I Einstein-Hilbert action (minimal coupling)

S =
1

2κ2

∫
d4x
√
−gR +

∫
d4x
√
−gLm(gµν,ψm) (13)

κ2 = 8π (in G = c = 1 units); g = det(gµν), Lm : matter Lagrangian; ψm : matter fields;
I Variational principle:

δS =
1

2κ2

∫
d4x(δ

√
−gR +

√
gδR) +

∫
d4xδ(

√
−gLm) (14)

Exercise: Derive the Einstein equations (hint: integrate partial derivatives by parts):

Gµν ≡ Rµν−
1
2

gµνR = κ
2Tµν;Tµν =− 2√

−g
δSm

δgµν
(15)

I Second-order differential equations: two integration constants. Physical interpretation.
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Some concepts to keep in mind for black hole physics - I

I The chronological future (past) of a event p ∈M , dubbed as I+(p), is the set of all
q ∈M , such that there is a smooth future (past)-directed non-degenerate timelike curve
from p to q.

I Null and time-like vectors. Let uµ = dxµ/dλ be the tangent vector to a geodesic curve
γµ = xµ(λ). This vector satisfies:

gµνuµuν =−k (16)

where k = 0 is a null vector (region), k = 1 is a time-like vector, and k =−1 is a
space-like vector. Trajectories of photons and particles.

I A subset S ⊂M is said to be achronal if there does not exist a pair of events p,q ∈ S
such that it can be connected by causal curves.

I Let S be a spacelike three-dimensional manifold. If every inextendible non-spacelike
curve in M intersects S , then S is said to be a Cauchy surface.
It is believed that all physically reasonable spacetimes are globally hyperbolic, but there is
no proof of this.

I M is said to be globally hyperbolic if it admits a global Cauchy surface.
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Some concepts to keep in mind for black hole physics - II

I Event horizon: To formulate a black hole as the intuitive notion of a “region of no scape”,
or a region of space-time where gravity is so strong that any particle or light ray entering
into that region can never space from it. This becomes equivalent to an infinite redshift
surface.
Let (M ,gµν) be an asymptotically flat space-time. It is said to contain a black hole if M is
not contained in J− (the causal past of null infinity). The black hole region, B, is defined
as B = [M − J−] and the boundary of B in M , that is, H = J− aM , is called the event
horizon.

I Trapped surface. A closed trapped surface is a 2-dimensional embedded submanifold S
(aka a surface) such that the two families of light rays emerging ortogonally from S
towards the future converge (that is, they are “trapped”).
Locally, the two families of light rays can be represented by a pair of future-directed
affine-parameterized geodesic null vector fields kµ

±. The infinitesimal variation of the area
of S is measured by the respective expansions:

θ± = ∇µkµ
± (17)

Therefore, a closed trapped surface satisfies θ± < 0.
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LESSON I: TOWARDS THE SCHWARZSCHILD SOLUTION
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Static, spherically symmetric metric - I

I A static space-time:
I All the metric components gµν are independent of x0 (aka “time”).
I The line element ds2 is invariant under the transformation x0→−x0.

Bonus track: A space-time satisfying the first but not the second feature is called
stationary (e.g. Kerr).

I Let us begin with an isotropic metric (not yet static). That is, it depends on rotational
invariants~x~̇x = r2, d~x ·d~x and so on.

ds2 = A(t, r)dt2−B(t, r)dt~x ·d~x−C(t, r)(~x ·d~x)2−D(t, r)d~x2 (18)

I Go to spherical polar coordinates

x1 = r sinθcosφ (19)

x2 = r sinθsinφ (20)

x3 = cosθ (21)

we obtain ( Exercise : show this is true)

ds2 = A(t, r)dt2−B(t, r)rdtdr −C(t, r)r2dr2−D(t, r)(r2dθ
2 + r2 sin2

θ
2dφ

2) (22)

I Redefining A,B,C,D we can write

ds2 = A(t, r)dt2−B(t, r)dtdr −C(t, r)dr2−D(t, r)(r2dθ
2 + r2 sin2

θdφ
2) (23)
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Static, spherically symmetric metric - II

I Introduce a new radial coordinate r̄2 = D(t, r) to write ( Exercise : There is here an
unstated assumption. Can you spot it?.):

ds2 = A(t, r̄)dt2−B(t, r̄)drdr −C(t, r̄)dr̄2− r̄2dΩ2 (24)

I Introduce a new “time” coordinate dt̄ = Φ(t, r̄)[A(t, r̄)dt− 1
2 B(t, r̄)dr̄ ] and square it to

write

Adt2−Bdtdr̄ =
1

AΦ2 dt̄2− B2

4A
dr̄2 (25)

I Now define the new functions Ā = 1
AΦ2 , B̄ = C + B2

4A and remove bars everywhere to write

ds2 = A(t, r)dt2−B(t, r)dr2− r2dΩ2 (26)

This is the most general isotropic metric one can build.

I For the most general static metric one just needs to neglect the time dependence:

ds2 = A(r)dt2−B(r)dr2− r2dΩ2 (27)

Exercise : Verify all these steps.
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Derivation of the Schwarzschild metric - I

I The Schwarzschild metric corresponds to a static, spherically symmetric, vacuum solution
of Einstein’s field equations, Gµν = 0. Because in vacuum R = 0, it suffixes to solve
Rµν = 0.

I How?. Step 0: We will need the covariant and contravariant components of the metric
tensor (remember that gµνgνα = δα

µ ):

g00 = A(r);g11 =−B(r);g22 =−r2;g33 =−r2 sin2
θ; (28)

g00 =
1

A(r)
;g11 =

−1
B(r)

;g22 =
−1
r2 ;g33 =

−1

(r2 sin2 θ)
(29)

I Step 1: Compute the Christoffel symbols:

Γσ
µν =

1
2

gσρ(∂µgρµ + ∂µgρν−∂ρgµν) (30)

The non-vanishing ones are:

Γ0
01 =

A′

2A
;Γ1

22 =− r
B

;Γ1
00 =

A′

2A
;Γ1

11 =
B′2
2B

;Γ1
33 =− r sin2 θ

B
(31)

Γ2
12 =

1
r

;Γ2
33 =−sinθcosθ;Γ3

13 =
1
r

;Γ3
23 = cotθ (32)
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Derivation of the Schwarzschild metric - II

I Step 2: Compute the Ricci tensor

Rµν = ∂αΓα
νµ−∂νΓα

αµ + Γα

αβ
Γ

β

νµ−Γα

νβ
Γ

β

αµ (33)

The non-vanishing ones are:

R00 = −A′′

2A
+

A′

4A

(
A′

A
+

B′

B

)
− A′

rB
(34)

R11 =
A′′

2B
− A′

4B

(
A′

A
+

B′

B

)
− B′

rB
(35)

R22 =
1
B
−1 +

r
2B

(
A′

A
− B′

B

)
(36)

R33 = R22 sin2
θ (37)

I Step 3: Solve the field equations Rµν = 0. Combine first

B
A

R00 + R11 = 0→ A′B + AB′ = 0→ (AB)′ = 0→ AB = α (38)

and then use R22 = 0 to find A + rA′ = α which upon integration yields rA = α(r + k),
that is

A(r) = α

(
1 +

k
r

)
;B(r) =

(
1− k

r

)−1

(39)
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Derivation of the Schwarzschild metric - III

I Step 4: Interpret physically the solution.
I The weak-field limit (i.e. consistence with Newtonian gravity) demands that, asymptotically

A(r)

c2 = 1 +
2Φ

c2 (40)

where Φ is the Newtonian potential. For a spherically symmetric mass M we have
Φ =−GM

r , therefore k =− 2GM
c2 and α = c2.

I This way we have arrived to the canonical form of the Schwarzschild metric (1917)

ds2 =

(
1− 2GM

c2r

)
(cdt)2−

(
1− 2GM

c2r

)−1

dr2− r2dΩ2 (41)

which describes the space-time geometry outside a spherical body of total mass M. The
latter represents the mass seen by an asymptotic observer orbiting the body following
Newton’s law, and it is consistent with global mathematical definitions of the mass
enclosed in the sphere.
Exercise : Could you check that this is the case with the Arnowitt-Deser-Misner (ADM)

definition of the mass?.
I Birkhoff’s theorem: The space-time geometry outside any spherically symmetric matter

(vacuum) distribution is Schwarzschild.
I Indeed, Uniqueness theorems1: Schwarzschild geometry is the only vacuum, static,

spherically symmetric solution of GR.
1W. Israel, Phys. Rev. 164, 1776 (1967).
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LESSON II: FEATURES OF THE SCHWARZSCHILD METRIC
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Event horizon

I Schwarzschild metric in G = c = 1 units

ds2 =−
(

1− 2M
r

)
dt2 +

(
1− 2M

r

)−1

dr2 + r2dΩ2 (42)

I The function A(r) = 1−2M/r has a simple monotonic behavior:

1 2 3 4 5

r

-1.0

-0.5

0.5

1.0

A(r)

Figure: Schwarzschild solution for M = 1/2.

I Potential difficulties at two points where the metric components become zero or infinity
(actually both). The first one is the Schwarzschild radius:

rS =
2GM

c2 (43)

For the Sun, rS ≈ 2.95km; for a proton, rS ≈ 2.5×10−54m.
I At this point grr = gtt = 0 blows up. “Singular” behaviour?. Interpretation?.
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Freedom of coordinates: Eddington-Filkenstein coordinates

I It can be removed out of a coordinate basis (remember that the metric is a tensor). One
suitable choice is the so-called (advanced) Eddington-Finkelstein coordinates, 1958:

v ≡ ct + r + 2M log | r
2M
−1| → dv = cdt +

r
r −2M

dr (44)

when allows to cast Schwarzschild metric into the form

ds2 =
(

1− 2M
r

)
dv2−2dvdr − r2dΩ2 (45)

In these coordinates the metric is regular at r = 2M, while the zero of gtt is interpreted as
an infinite redshift as seen by an external observer (see next slide).
Exercise: Using this system of coordinates, can you tell me what would happen to an

observer crossing r = 2M? (hint: use the fact that r < 2M is a space-like region, because
A(r) changes its sign there and the metric changes its signature).

I Bottom line: coordinate singularities are not physical singularities!.
I The metric is singular at r = 0 as well. Is there any change of coordinate allowing to

remove this singularity?. To prove that there is not, one compute objects that do not
depend on the choice of coordinates. For Schwarzschild, R = RµνRµν = 0, but the
Kretchsmann scalar behaves as

K ≡ Rα
µνβRα

µνβ =
48M2

r6 (46)

which blows up at r = 0 and, therefore, this is a truly singular behaviour. Curvature
singularities.
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Event horizon as an infinite redshift function

I Let us two observers, one acting as the emitter of two photons and the other as the
receiver of them.

I In the frame of the emitter, the first photon is emitted at a time tE and the second at a time
t ′E = tE + δ, which on its frame are received by the receiver at times tE and t ′R = tR + δ,
since the equality t ′E − tE = t ′R − tR must hold or, in other words, ∆tR = ∆tE .

I The proper times measured on each frame are related by the equation

dτ
2 =

(
1− 2M

r

)
dt2⇒∆τ =

(
1− 2M

r

)
∆t (47)

I Therefore, the rate of periods they experiment between each pulse is given by (using the
equality ∆tR = ∆tE ) (

1−2M/rE

1−2M/rR

)1/2

=
∆τE

∆τR
=

νR

νE
(48)

I Let us define the redshift as 1 + z = νE/νR and assume the emitter to be located at the
horizon, rE → rS , and the receiver at asymptotic infinity, rR → ∞, so that the redshift goes
as

z ∼
(

rE

rE −2M

)1/2

→ ∞ (49)

i.e. an infinite redshift implying an infinite time to cross the horizon as seen by the
asymptotic observer.
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Interior solution

I The Schwarzschild metric describes only the exterior of the spherically symmetric body of
mass M. What about its interior. What is it filled of?.

I Complement Einstein’s equation with a perfect fluid for r < rs :

Tµν =−(ρ + P)uµuν + pgµν (50)

Assuming spherical symmetry, ds2 = A(r)dt2−B(r)dt2− r2dΩ2 one can solve
Einstein’s equations as

A′(r)

A(r)
= − 2P ′

ρ + P
(51)

B(r) = (1−2m(r)/r)−1;m(r) = 4π

∫ r

0
ρ(̃r )̃r2dr̃ (52)

Pr = −ρ + P
r2

[
4πPr3 + m(r)

]
B(r) (53)

These are just the Oppenheimer-Tolman-Volkof equations of hydrostatic equilibrium for
any spherical symmetric body filled with a perfect fluid (provided an equation of state,
P = P(ρ) is given). It is suitable for any star, but the interior fluid of Schwarzschild metric
is not known.
Exercise : Can you tell me whether a delta-type source at the center of the

Schwarzschild black hole would be a suitable candidate to generate this geometry2.
2Hint: check T. Ortin, “Gravity and Strings” book.
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Maximal extensions - I

I Exercise : Can you introduce new (retarded) Eddington-Filkenstein coordinates to deal
with the white hole horizon?.

I It is possible to introduce a new set of coordinate such that the resulting solution
(combining advanced + retarded EF coordinates) is valid for every r > 0 (i.e. everywhere
outside the central singularity). These are the Kruskal-Szekeres coordinates

T =

√
r

2M
−1e

r
4M sinh

(
t

4M

)
;R =

√
r

2M
−1e

r
4M cosh

(
t

4M

)
; r > 2M

T =

√
r

2M
−1e

r
4M cos

(
t

4M

)
;R =

√
r

2M
−1e

r
4M sinh

(
t

4M

)
;0 < r < 2M

I The line element becomes

ds2 =−32M3

r
e−

r
2M (dT 2−dR2) + r2(u,v)dΩ2 (54)

where the radial function is implicitly defined by the relation

T 2−R2 =
(

1− r
2M

)
e

r
2M ;T 2−R2 < 1 (55)
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Maximal extensions - II

I The Kruskal extension splits the extended space-time into four regions.

Figure: Kruskal-Szekeres maximal extension of Schwarzschild geometry. Light rays are
45 degrees straight lines and physical observers are contained in their light cones.

I From the asymptotic regions I (−R < T < +R) and III (+R < T <−R) signals
can be transmitted to region II (|R|< T <

√
1 + R) crossing the future event

horizon, but they are not causally connected.
I Any signal/particle in line II unavoidably end up hitting the central singularity r = 0

in finite proper time. This is the black hole region.
I Any signal departing from region IV (−

√
1 + R < T <−|R|) must have arisen at

r = 0 at a finite past time, and unavoidably exits crossing the past event horizon
towards either region I or III. This is the white hole region.
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Geodesic behaviour

I A geodesic curve γµ = xµ(λ) with tangent vector uµ = dxµ

dλ
and affine parameter λ

satisfies
d2xµ

dλ2 + Γ
µ
αβ

dxα

dλ

dxβ

dλ
= 0 (56)

I By spherical symmetry there are two conserved quantities: L = r2dϕ/dλ (angular
momentum per unit mass) and E = Adt/dλ (total energy per unit mass).

I Rewrite the geodesic equation in terms of the geodesic tangent vector(
dr
dλ

)2

= E2−A(r)

(
−κ +

L2

r2

)
(57)

where k = 0(−1) for null (time-like) geodesics. Null geodesics represent light rays (aka
transmission of information), while time-like geodesics are associated to physical
observers (aka physical particles particles). k = +1 for space-like observers, i.e.,
hypothetical tachyon-like particles.

I This is as a single differential equation akin to that of a classical particle in a one
dimensional potential of the form

V(r) = A(r)

(
κ +

L2

r2

)
(58)

Exercise : Can you classify when a given geodesic will be able to cross r = 2M (hint:
those maxima of the potential seem to be hiding something...)3.

3You can help yourself by checking S. Chandrasekhar, “The mathematical theory of black holes”.
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Orbits

I For the Schwarzschild black hole the effective potential reads

E2 = ṙ2 +

(
L2

r2 − k

)(
1− 2m

r

)
(59)

I For a circular orbit V ′eff = 0, which amounts to

V ′eff (r) =
2M
r2

(
L2

r2 − k

)
− 2L2

r3

(
1− 2M

r

)
= 0 (60)

which is satisfied at a radius

1
rm

=
1

6M

1±

√
1 + 12

(
M
L

)2

k

 (61)

which will be unstable (stable) if V ′′ > 0 (V ′′ < 0). For a photon, k = 0, this radius reads
rps = 3M, which corresponds to a maximum of the effective potential and is dubbed as the
photonsphere. It is the uttermost relevant feature of a black hole for GWs and shadows.

I For a massive particle k =−1 the innermost unstable circular orbit (ISCO) exists if
1≥ 12(M/L)2 and lies always beyond its photonsphere at r = 6M.

I There are no stable circular orbits in Schwarzschild geometry. Exercise : What about the
Reissner-Nordström geometry?.
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Gravitational lensing - I

I Suppose a photon that departs from asymptotic infinity and is deflected by the black hole
at some radius r0 > rps . At this point we have E2 = V(r0), that is

b(r0) =
1
r0

√
1−2M/r0 (62)

where b ≡ L/E is the impact parameter.
I Replacing the definition of angular momentum L = r2dϕ/dλ in the geodesic equation one

finds
dφ

dr
=

[
r4

b2 − r2
(

1− 2M
r

)]−1/2

(63)

whose integration defines the angular light deflection angle (the angle between the
asymptotic incoming and outgoing trajectories) as

α(r0) = 2
∫

∞

r0

[
r4

b2 − r2
(

1− 2M
r

)]−1/2

dr −π (64)

I In the weak field limit, via the change of variable u = 1/r this expression becomes

α =
∫ u0

0

[
u2

0(1−2Mu0)−u2(1−2Mu)
]−1/2

du−π≈ 4M
b

(65)

which is the angular deflection in the standard Schwarzschild spacetime.
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Gravitational lensing - II

I Exercise : Prove that, for a generic spherically symmetric line element

ds2 =−A(r)dt2 + B−1(r)dr + C(r)dΩ2 (66)

from the geodesic equation the deflection angle is obtained as

α = 2
∫

∞

r0
r

[√
B(r)

C(r)[C(r)/A(r)]−b2

]1/2

−π (67)

where the impact parameter is defined as b2 = C(r0)/A(r0)4.
I In the strong-field regimen one can show that the deflection angle in that limit reads5.

α = 4
√

r0/sF(ϕ,m)−π (68)

with the definitions

s =
√

(r0−2M)(r0 + 6M);m = (s− r0 + 6M)/s (69)

ϕ = arcsin
√

2s/(3r0−6M + s) (70)

I Light rays whose impact parameter approaches b > b0 experience larger deflections.
When α > 2π, this means that they can turn n loops around the black hole before leaving
it (for b = bc it would turn infinite times while approaching r = r0). For b < bc the photon
is captured by the black hole.

4Hint: check the book: S. Weinberg, Gravitation and Cosmology (Wiley, New York, 1972).
5V. Bozza, Gen Rel. Grav. 42 (2010) 2269.
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The black hole lens

I A lens equation is the relation between the positions of the relativistic images and the
geometry (relative position of source, observer and lens) parameters of the system from
the observer’s viewpoint.

∆ϕ

BH!

image!

source!

I!

S!
b

C!

L!
DOL!

observer!

ω Θ O!
b

DLS!

DOS!

Figure: Lens diagram, where S, L, O, and I are the positions of the source, lens object, observer, and image, respectively.

I Assuming both source and lens to be far away from the black hole so that the gravitational
fields there are weak enough to be described by a flat metric, the lens equation is given
by6

tanω = tanθ− DLS

DOS
[tan(∆(ϕ)−θ) + tan(Θ)] (71)

where ω and Θ correspond to the lens/source and the lens/observer angular separation,
while DLS and DOS stand from the distance between lens and source, and observer and
source.

6K. S. Virbhadra, G.F.R. Ellis, Schwarzschild black hole lensing, Phys. Rev. D 62 (2000) 084003).
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Strong gravitational lensing

I In the strong gravitational lensing one goes to the strong deflection limit source, assuming
lens and observer to be highly aligned, i.e., ω� 1 and Θ� 1 (and (∆ϕn−Θ)� 1,
where ∆ϕn ≡∆−2πn). Using that in the lens geometry b ' DOLΘ one gets the
deflection angle

∆ϕ(Θ) =−a1 log

(
DOLΘ

bc
−1

)
+ a2 . (72)

where the strong deflection coefficients a1 and a2 are functions of r0 for every black hole.
I The relativistic images correspond to ∆ϕ(Θ) = 2πn, which yields

Θ0
n =

bc

DOL

[
1 + exp

(
a2−2nπ

a1

)]
(73)

where Θ0
n is the angle of the nth relativistic image. Due to the exponential contribution the

first relativistic image, Θ0
1, is the brightest one, while the others are greatly demagnified.

I Three other observables (assuming that the first relativistic image Θ0
1 can be resolved

from the others:) the position of the relativistic images except the first one, Θ0
∞, and the

two quantities

s ≡ Θ0
1−Θ0

∞ = Θ0
∞ exp

(
a2−2π

a1

)
(74)

R = exp(2π/a1) (75)

which are the angular separation between the first image and all the others, and the ratio
between the flux of the first image and all the others. The latter defines a more convenient
observable, Rm = 2.5 log10 R, which is the relative magnification of the images.
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Observables of strong lensing

Figure: Under construction
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The dynamical Vaidya metric - I

I Consider the formation of a black hole from an ingoing flux of pressureless neutral matter
following null radial geodesics towards the interior. Energy-momentum tensor:

Tµν = ρin lµ lν (76)

where ρin is the energy density of the ingoing stream and lµ represents a null radial vector
lµ lµ = 0 (“radiation”). So that we have to solve Rµν = κ2ρin lµ lν.

I This process represents the dynamical generation/perturbation of a black hole with
spherical symmetry from a pure radiation field. This problem is more easily dealt with
using the following coordinate system:

ds2 = gabdxadxb + r2dΩ2 (77)

where (x0,x1) is the coordinates of the two-spaces with (θ,φ) =constant, and r(xa)
measures the area of the two spheres of xa = constant.

I The Einstein tensor is computed as

4Gab = − 1
r2 [2rr;ab + (1−2r�r − r ′ar,a)gab] (78)

Gθθ = sin2
θGφφ = r�r − 1

2
r2R (79)

where �ψ = gab∇a∇bψ.
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The dynamical Vaidya metric - II

I For a null presureless fluid (T = 0), introducing A = r
′ar′a = 1−2m/r these equations

can be combined as

r;ab−
m
r2 gab = −4πrρin la lb (80)

m,a = 4πr2T b
a r,b (81)

I To solve them, let us introduce the (Vaidya-type) line element

ds2 =−Ae2ψdv2 + 2eψdvdr + r2dΩ2 (82)

where A(v , r) = 1− 2m(v)
r and ψ(v , r) are the metric functions and the null vector is

normalized as la =−∂av .
I The v− r component of (80) component yields ψr = 0→ ψ = ψ(v). Thus redefining

dV = eψ(v)dv we can eliminate this metric component from the line element.
I Integration of the v− v component of (80) yields mv = κ2r2

2 ρin, which is consistent with
the r − r component of (81) since the latter implies mr = 0.

I Introducing the luminosity function L(v) = κ2r2

2 ρin one finally finds

ds2 =−
(

1−
2
∫ v2

v1
L(v)dv

r

)
dv2 + 2dvdr + r2dΩ2 (83)

which is the Vaidya metric. For a Dirac-delta pulse L(v) = m0δ(v− v0) (with
v0 ∈ [v1,v2]), the integration yields m(v) = m0, which causes the event horizon to grow
until the flux ceases.
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Gravitational collapse - I

I To describe gravitational collapse we consider comoving coordinates (t, r ,θ,ϕ) (i.e.
locally moving with the matter) as

ds2 =−e2ν(r ,t)dr2 + e2ψ(r ,t)dr2 + R2(t, r)dΩ2 (84)

where the function R(t, r) is the physical radius of the collapsing shell at a given time t
and comoving radius r . At the initial time ti , we can write R(ti , r) = r .

I Assuming an anisotropic fluid with stress-energy tensor

ρ =−T t
t ;pr = T r

r ;p⊥ = T θ
θ = T ϕ

ϕ (85)

satisfying the dominant energy condition, which amounts to ρ≥ 0, ρ + pr ≥ 0,
ρ + p⊥ ≥ 0, |pr | ≤ ρ, |p⊥| ≤ ρ.

I The Einstein equations in this case yield a complicated system of equations depending on
ψ,ν,R and their temporal and spatial derivatives, which can be recast as

ρ =
F ′

R2R′
;pr =

Ḟ

R2Ṙ
;ν
′ =

2(pθ−pr )R′−p′r R
(ρ + pr )R

;R′
Ġ
G

+ Ṙ
G′

G
= 0 (86)

via the definitions

G(t, r) = e−2ψR′2;H(t, r) = e2νṘ2→ F(t, r) = R(1 + H−G) (87)
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Gravitational collapse - II

I The first equation is integrated as

F(t, r) =
∫

dRR2(t,R)ρ(t,R)dR (88)

which is interpreted as the total mass inside a shell of comoving radius r at a time t . The
DEC translates in F > 0, while the condition F(r , r = 0) is needed to ensure the
regularity of the density at the center of the shell.

I Two classes of possible singularities:

I R′ = 0 are shell-crossing singularities, which happen when outer shells collapse
faster than their neighbouring inner shells, and are removable by coordinate
changes.

I R = 0 is the shell-focusing singularity, caused by the matter shells collapsing to a
zero physical radius

I We have six independent variables ρ,pr ,pθ,ψ,ν,R and four equations, to evolve with
initial conditions ρ(ti , r),pr (ti , r),p⊥(ti , r) together with the velocity profile ψ(ti , r). Close
the system with equations of state pr = pr (ρ),p⊥ = p⊥(ρ).

I The goal of the subsequent analysis is to determine whether the time needed for the
shells to hit the shell-focusing singularity is prior to the formation of the event horizon or
not. In the latter case the end-state of the gravitational collapse is a black hole, in the
former it is a naked singularity instead (forbidden by the cosmic censorship?).
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Gravitational collapse - IV: naked singularities

I A naked singularity occurs when there are nonspace-like geodesics emanating out of it,
therefore rendering it visible to external observers.

I Naked singularities are abhorrent since they undermine the predictability and determinism
of our physical theories.

I Usually this question is sweep under the carpet by invoking the cosmic censorship
(Penrose 1969) in either its weak form: Singularities are always hidden from asymptotic
observers behind event horizons or on its strong form: The space-time cannot be
extended beyond its Cauchy horizon (to preserve determinism, given the instability of
Cauchy horizons, as explained below).

I The strong CC has been disproved by explicit counter-examples, recently developed in
the literature.

I As for the weak CC, one thus build explicit collapse model and focus on whether the
formation of a trapped surface occurs before or after the singularity appears yielding a
black hole in the first case or a naked singularity in the former, which is therefore visible to
external observers even for a while⇒ explicit such models do exist in the literature.

I While inhomogeneouties are frequently invoked in order to delay the collapse,
alternatively bounces by quantum matter/gravity effects are also able to do the job.
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Gravitational collapse - III

collapsing
matter

r=
2
M

t

r
r=

0

initial surface

light ray

spacetime
singularity

event
horizon

apparent
horizon

boundary
of the star

Figure: Dynamical evolution of a homogeneous spherical dust cloud collapse, as described by the
Oppenheimer-Snyder-Datt solution.
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Perturbations and stability

Figure: Under construction
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LESSON III: ELECTRICALLY CHARGED BLACK HOLES. THE
REISSNER-NORDSTRÖM METRIC
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The Reissner-Nordström black hole - I

I We look now for the metric outside a static spherically symmetric charged body. A
(electric) Maxwell field is described by the Lagrangian density

Lm =−1
4

FµνF µν (89)

where Fµν = ∂µAν−∂νAµ is the field strength tensor of the vector potential Aµ.

I Einstein equations Gµν = κ2Tµν with

Tµν =−1
4

(
FµρFν

ρ− 1
4

gµνFαβF αβ

)
(90)

I The electromagnetic field satisfies the field equations

∇µF µν = 0 (91)

and the Bianchi identities hold ∇σFµν + ∇νFσµ + ∇µFνσ = 0.

I (Electro)-static, static, spherically symmetric solutions satisfy Aµ = (φ(r),0,0,0) so that
the only non-vanishing component of the field strength tensor is Ftr ≡ E(r) 6= 0.
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The Reissner-Nordström black hole - II

I For the line element
ds2 = A(r)dt2−B(r)dr2− r2dΩ2 (92)

Maxwell field equations become

∇µF µ =
1√
−g

∂µ(
√
−gF µν) = 0→ ∂r (

√
ABr2F tr ) = 0 (93)

and are immediately integrated as E(r) = Q/(r2
√

AB), where Q is an integration
constant associated to the electric charge. In flat (Minkowski) space-time, A = B = 1, and
we recover standard’s Coulomb field.

I Integration of the field equations: first note that T t
t = T r

r which entails A = B−1, and one
write the remaining Einstein equations as

d
dr

(rA(r)− r) = −8πQ2/r2 (94)

d2

dr2 (rA(r)) = 16πQ2/r3 (95)

which form a compatible set with Maxwell equations via ∇µGµν = 0.
I Integration and interpretation of constants yields:

ds2 =−
(

1− 2M
r

+
Q2

r2

)
dt2 +

(
1− 2M

r
+

Q2

r2

)−1

+ r2dΩ2 (96)

which is the Reissner-Nordström solution (1916-1921) in Schwarzschild coordinates.
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Properties of the Reissner-Nordström black hole - I

I The Reissner-Nordström solution has two coordinate singularities at gtt = grr = 0 as

r± = M±
√

M2−Q2 (97)

1 2 3 4 5

r

-1.0

-0.5

0.5

1.0

1.5

2.0

A(r)

Figure: The Reissner-Nordstöm black hole M = 1 and Q2 = 1/2,1,2.

I These zeros of are interpreted as horizons, yielding three scenarios:

I M2 > Q2: There are two horizons and three regions. The external is the event
horizon and the internal is called the Cauchy horizon. The external region is the
asymptotic one, in the intermediate t and r change their nature (as in the
Schwarzschild one) and in the innermost the time-like character of the region is
restored.

I M = Q2: Event and Cauchy horizon meet at r = M. This is a extremal black hole.
I M < Q2: No horizon and t is timelike. A time-like naked singularity.
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Properties of the Reissner-Nordström black hole - II

I Mass inflation: An instability of the inner horizon caused by counterstreaming fluxes of
ingoing and outgoing fluxes crossing the inner horizon. It can thus be argued that the
Cauchy horizon is the true singularity in a Reissner-Nordström black hole.

I E. Poisson and W. Israel, “Inner-horizon instability and mass inflation in black
holes,” Phys. Rev. Lett. 63 (1989), 1663

I A. Ori, “Inner structure of a charged black hole: An exact mass-inflation solution,”
Phys. Rev. Lett. 67 (1991) 789.

I Cosmic censorship conjecture: In a generic stellar evolution, any singularity are hidden
behind an event horizon, so the overcharged Reissner-Nordström solution is (classically)
forbidden.

I The sources problem: Since Birkhoff’s theorem tells us that the external solution to a
Schwarzschild/Reissner-Nordström black hole is the same regardless of the distribution of
the matter behind their event horizons, is it possible to have all the matter piled up at the
center (where it will end up eventually in the Sch case given the space-like nature of its
singularity) generating the geometry?. The answer is NO, since it is mathematically
inconsistent to have a delta-source type at the center containing all the mass and charge
of the system while at the same time being a solution of the Einstein-Maxwell equations
everywhere.
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Thermodynamics - I

I Consider a black hole which undergoes a small pertubation and settles down into a new
stationary state with small changes to its mass dM, charge δQ, angular momentum δJ,
and horizon area dS

I The black hole horizon has a surface gravity defined by κ, ka∇akb = κkb , where ka is a
Killing vector for a stationary black hole is constant. For a static, spherically symmetric
black hole the surface gravity reads

κ =
1
2

∂gtt

∂r

∣∣∣
r=rh

(98)

I The four laws of black hole mechanics:

I Zeroth law: κ is constant over the horizon.
I First law: The perturbed black hole quantities satisfy

dM =
κ

2π
dA + ΦdQ + ΩdJ (99)

where Φ =
∫

∞

rh
E(r)dr the electric potential at the horizon and Ω the angular

velocity (when the extension to non-vanishing rotating is implemented).
I Second law: dA≥ 0 as long as the null energy condition holds for any observer

crossing the event horizon.
I Third law (conjectured): No set of finite physical processes can reduce κ down to

zero.
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Thermodynamics - II

I The four laws have the same formal form as those of standard thermodynamics provided
that one identifies the surface gravity with the temperature as T = κ/2π and with A
playing the role of the entropy.

I However, black holes are, well, black, so how could they have a temperature?.

I Bekenstein argued in 1973 that to preserve the second law of thermodynamics there
should be an entropy associated to the black hole horizon as A/~ so that a generalized
second law would read dSgen ≥ 0.

I In 1974 Hawking announced that black holes are not black: vacuum fluctuations of the
quantum fields in the vinicity of the horizon yields particles which propagate to asymptotic
infinity and others that get trapped in the event horizon, resulting in a black body radiation
with temperature T = ~k/2π. Isolated black holes evaporate with time!.

I For a Schwarzschild black hole, the evaporation time scales as t ∼M3/~, which for a one
solar mass black hole amounts to ∼ 1067 years to evaporate!.
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Thermodynamics - III

I For Reissner-Nordstöm black hole, the temperature can be computed as (Exercise [easy]
verify it; [hint]: you need to use the horizon equation to obtain the final solution):

T =
1−8πr2T 0

0(rh)

4πrh
=

1−8πQ2/r2
h

4πrh
(100)
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Figure: Temperature for Schwarzschild (dashed) and Reissner-Nordström (solid).

I There are further thermodynamical quantities useful in the characterization of black holes.
For instance, the specific heat

CQ =
∂M
∂T

∣∣∣
Q

(101)

yields stable/unstable solutions depending on its positive/negative sign.
Exercise : Obtain CQ for Schwarzschild and Reissner-Nordström BHs. Are there any

unstable solution? [hint: remember that M and T are functions of rh. Use the chain rule!].
I Last stages of evaporation process, reliable of neglecting back-reaction, information loss

problem?.
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The information loss problem

I A central tenet to quantum mechanics is unitarity: a complete quantum system in a pure
state remains in a pure state. In other words, information must be preserved from a
quantum mechanics perspective.

I If a pure quantum state enters a black hole, the transformation of that state into the mixed
state of into the mixed state of Hawking radiation violates the unitarity and then destroys
information about the original quantum state.

I Proposed solutions:

I Information is unavoidably lost - hence quantum mechanics is wrong?.
I Information is gradually and somewhat leaked out via the evaporation process.
I A black hole remnant stores all the missing information.
I Information never entered the black hole (firewall paradigm).

Diego Rubiera-Garcia Complutense University of Madrid, Spain drubiera@ucm.esElementary and advanced black hole physics: a modern practitioner’s guide.



Black holes embedded in (Anti-) de Sitter spaces: the Hawking-Page transition - I

I Motivated by the late-time acceleration of the Universe, whose simplest implementation is
via the addition of a cosmological constant term to Hilbert’s action:

SEHΛ =
1

2κ2

∫
d4x
√
−g(R−2Λ) (102)

so that Einstein’s equations read Gµν + Λgµν = κ2Tµν.
I Spherically symmetric electrovacuum solutions are easily found as

f (r) = 1− 2M
r

+
q2

r2 +
r2

l2
(103)

where the cosmological constant length is defined as Λ =−3/l2, characterizing
asymptotically anti-de Sitter spaces (l > 0), de Sitter ones (l < 0) and Minkowski
otherwise (l = 0).

I In this case the mass function (solution of f (rh) = 0 reads as

M(rh) =
rh

2

(
1 +

r2
h

l2

)
+

Q2

2rh
(104)

and the temperature as

T =
3r4

h + l2r2
h − l2Q2

l2r3
h

(105)
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Black holes embedded in (Anti-) de Sitter spaces: the Hawking-Page transition - II

I The interest in the de Sitter branch comes from the fact that, in addition to the solutions
having two horizons or a single extreme (degenerate) one, one may also find solutions
with up to three horizons. In all cases, the largest such horizon is known as a
cosmological horizon rather than the event one.

I The interest in the anti-de Sitter branch comes from the behaviour of the temperature
function, where a relative minimum can be found in some cases.
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Figure: Temperature for RN-AdS black holes for l = 1 and Q = 1/10 (blue) and Q = 1/5 (orange).
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Black holes embedded in (Anti-) de Sitter spaces: the Hawking-Page transition - III

I Its interpretation can be revealed by having a glance at the specific heat at constant
charge:

CQ ≡
∂M
∂T

∣∣∣
Q

=
∂M
∂rh

∣∣∣
Q

(
∂T
∂rh

)−1 ∣∣∣
Q

(106)
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Figure: Specific heat for RN-AdS black holes with q = 1/10 and l = 1 (blue), and its comparison with the standard
RN case, l→ ∞ (orange).

I A new branch of stability in CQ > 0 is found for rh > rmin. The first-order transition
between the RN-AdS black hole and the thermal AdS space is known as the
Hawking-Page transition.
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Higher dimensions and topological black holes - I

I In higher D = (n + 1) dimensions one needs to generalize the spherically symmetric line
element as

ds2 =−ev(r)dt2 + eλ(r)dr2 + r2dΩ2
D−2 (107)

where dΩ2
D−2 = dθ2

1 + ∑
D−2
i=1 ∏

i−2
j=1 sin2 θj dθ2

1 is the metric on the unit (D−2) sphere.
I The corresponding electrovacuum solution is given by

f (r) = 1− m
rn−2 +

q2

r2(n−2)
+ l2r2 (108)

where now the cosmological constant has been rescaled as Λ =− n(n−1)
2l2

.
I The integration constants m and q are related to the physical (ADM) mass and charge as

M =
(n−1)ωn−1m

16πG
;Q =

√
2(n−1)(n−2)

ωn−1

8πG
q (109)

where ωn−1 is the volume of the (n−1) sphere.
I As usual, horizons are found at the locations of f (rh) = 0 and, in particular, the solutions

will described a charged black hole with a non-singular horizon at r = r+ if

n
n−2

r2n−2 + l2r2n−4
h ≥ q2 l2 (110)
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Higher dimensions and topological black holes - II

I The laws of black hole thermodynamics can be formulated in the usual way, with the

electric potential given by Φ =
√

n−1
2(n−2)

q
rn−2 .

I For instance, the temperature can be obtained as

T =
nr2n−2 + (n−2)l2r2n−4− (n−2)q2 l2

4πl2r2n−3 (111)

I However, the obtained solution is NOT the most general one. Indeed, one can generalize
spherical symmetry to

ds2 =−ev(r)dt2 + eλ(r)dr2 + r2
σij dx i dx j (112)

where σij dx i dx j represents the line element of a (n−1) dimensional hypersurface with
constant curvature (n−1)(n−2)k .

I Solutions with negative constant or vanishing curvature are known as topological black
holes.

I Since without loss of generality one may take k = 1,−1,0, the corresponding
electrovacuum solution reads

f (r) = k− m
rn−2 +

q2

r2(n−2)
+ l2r2 (113)

where k = 0 represents the usual spherical topology for the horizons of the asymptotically
flat case.

I Due to the different horizon structures, these topological black holes behave in many
aspects quite different from their spherically symmetric counterparts.
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The BTZ solution - I

I The 2 + 1-dimensional Einstein-Λ system admits an exact static, spherically symmetric
solution as

ds2 =−(N⊥)2dt2 + f−2dx2 + x2(dφ + Nφdt)2 (114)

with the definitions

N⊥ = f =

(
−M +

x2

l2
+

J2

4x2

)1/2

;Nφ =− J2

2x2 (115)

where M is the ADM mass of the system, l =−Λ−2 is the AdS length and J is the
angular momentum.

I It can be alternatively rewritten as

ds2 =

(
M− x2

l2

)
dt2 + f−2dx2 + x2dφ

2− Jdtdφ (116)

I Ergohorizons are given by the solutions of gtt = 0:

xerg = lM1/2 (117)

I The Killing horizons of this geometry are given by the zeroes of gxx = f 2, which are found
as

x2
± =

Ml2

2

(
1±

[
1−
(

J
Ml

)2
])

(118)

corresponding to the event and inner horizons, respectively.

Diego Rubiera-Garcia Complutense University of Madrid, Spain drubiera@ucm.esElementary and advanced black hole physics: a modern practitioner’s guide.



The BTZ solution - II

I Five classes of configurations:

1. For M > 0 and |J| ≤Ml : a spectrum of black holes (covered by an ergohorizon).
2. For M > 0 and |J|= Ml : extreme black holes.
3. For M > 0 and |J|< Ml : naked singularities.
4. For M = J = 0: a massless black hole, corresponding to purely AdS space
5. The M =−1,J = 0 state corresponds to a regular de Sitter core, disconnected

from the black hole spectrum by a mass gap.

I The BTZ can be generalized to the Einstein-Maxwell-Λ system as

ds2 =

(
M− x2

l2
+

Q2

2
logx

)
dt2 + f−2dx2 + x2dφ

2− Jdtdφ (119)

with f =
(
−M + x2

l2
+ J2

4x2 − Q2

2 logx
)1/2

and Q the electric charge.

I The ergohorizons are found by solving gtt = 0, which amounts to

x2− Q2 l2

2
logx− l2M = 0→ x± =± lQ

2
PL

[
−4e−4M/Q2

l2Q2

]1/2

(120)

where PL denotes the principal solution of Lambert’s W function. This represents two real
solutions depending on the combination of the values of {l,Q,M}.

I Unfortunately, in the charged case the regular BTZ solution is no longer present.
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Multicenter solutions - I

I The Majumdar-Papapetrou family is a particular class of solutions solving Einstein
equations

Gµν = κ
2(T m

µν + T em
µν ) , (121)

where T em
µν corresponds to an electromagnetic field and T m

µν = ρuµuν to a pressureless
(time-like) fluid.

I The matter field equations read
∇µF µν = 4πJν , (122)

where the charge density Jν = ρeuν.
I The MP class assumes the following relation between the metric and the electrostatic

potential Aµ = δt
µφ

gtt =

(
C± φ√

2

)2

. (123)

with C some constant. Enforcing this condition amounts to ρe = ρ, which is known as an
extreme counterpoised dust.

I In Cartesian coordinates the MP metric can be expressed as

ds2 =− 1
U(x ,y ,z)2 dt2 + U(x ,y ,z)2d~x ·d~x , (124)

where U =±
√

2
φ

, while the matter field equations yield U =−4πρU3.
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Multicenter solutions - II

I Any collection of extreme Reissner-Nordström black hole solutions (m2 = q2) located at
will is a particular MP solution without any need to impose additional symmetries. For this
reason, these configurations are sometimes called multicenter solutions.

I Finding additional solutions of interest typically involve the spherical symmetry restriction:

ds2 =−U−2(R)dt2 + U2(dR2 + R2(dθ
2 + sin2

θdφ
2)) , (125)

so that all functional dependencies are expressed in terms of R.
I A further coordinate change brings the line element into standard Schwarzschild form:

ds2 =−A(r)dt2 + B(r)dr2 + r2(dθ
2 + sin2

θdφ
2) , (126)

via the identifications r = RU(R), A(t) = U−2(R) and B(r)−1/2 = 1 + R
U dU(R)/dR.

I Either under (125) or (126), there are two paths to solve the MP field equations: i) to
assume a functional form for U(R) and solve the matter field equation to find the energy
density ρ(R) or ii) a function ρ(R) for the inner region is set and resort to numerical
methods to resolve the corresponding differential equation in order to get U(R).

I Example of the first path are the so-called Bonnor stars defined by two regions as

UE = 1 +
m
r
, r ≥ r0 (127)

U I = 1 +
m
r0

+
m(r2

0 − r2)

2r0r3
0

,0≤ r ≤ r0 , (128)

where the exterior solution, UE corresponds to an extreme Reissner-Norström black hole,
which is matched to the interior solution at a certain r = r0.
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Bonnor-Vaidya solutions

I The dynamical Vaidya solution can be generalized to account for the presence of a
charge, yielding the Bonnor-Vaidya solution as

ds2 =−
(

1− rS(v)

r
+

r2
q (v)

r2

)
dv2 + 2dvdr + r2dΩ2 (129)

where now the mass radius rS(v)/2 = M +
∫

L(v) and charge radius
r2
q (v) = κ2q2(v)/(8π) are related to the density of the ingoing stream of particles as

ρinr2 =
2
κ2

(
L(v)− κ2qqv

r

)
(130)

I In this system, L(v) and q(v) are free functions, whose dependence on v reflects the
presence of the charged stream of null particles.

I For vanishing charge, q(v) = 0, one gets the usual Vaidya solution.
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Properties of the RN black hole - mass inflation

I Recall that the energy-momentum associated with various massless test fields diverges at
a null hypersurface of the Cauchy horizon, triggering the development of an instability7.

I Model the infinitely blue-shifted radiation by an ingoing spherically symmetric stream of
massless particles, and add another flux of outgoing infinitely red-shifted massless
particles to model a piece of the ingoing field which has been backscattered by the hole’s
curvature to become outgoing.

I Construct an exact mass inflation solution by matching two patches of Bonnor-Vaidya
solutions (at constant q) outside (region I) and inside (region II) the inner horizon, and
through an outgoing null “thin layer”, using suitable double null coordinates {U,V}.

I Three matching conditions arise at and across the layer. These result into an expression
for the mass of the thin layer ∆m(u) = m2(u)−m1(u) ∝ R′(u), where the function R(u)
is the value of r along S, i.e., R(λ) = r(V = u,U = 0).

I Computation of this quantity yields the result:

∆m(u) ∝ v−p
1 exp(k0v1) (131)

where k0 = (2r0)−1(e2/r2
0 −1), v1 is the advanced time in region I, while p ≥ 12 comes

from the mass contribution associated with the radiative tail dominating the late-time
behaviour of realistic perturbations.

I Since the local curvature K ∝ m2 this entails its divergence at v1→ ∞, i.e., the interaction
between such fluxes makes the development of mass inflation. This curvature-singularity,
however, is weak, since the tidal forces (to be integrated twice) scale with the proper time
as τ2| log(τ)|−p as τ→ 0.

7A. Ori, Phys. Rev. Lett. 67 (1991), 789-792.
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LESSON IV: STATIONARY AXISYMMETRIC SOLUTIONS. THE
KERR(-NEWMAN) BLACK HOLE
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Stationary axisymmetric solutions

I Stationary metric outside a rotating massive body.
I Metric coefficients are independent of the timelike coordinate t(≡ x0) and the azimutal

angle φ(≡ x3), that is gµν = gµν(x1,x2). Besides, the rotating body is invariant under
simultaneous inversion t →−t,φ→−φ, thus g01 = g02 = g13 = g23 = 0. Thus the
metric becomes

ds2 = g00dt2 + 2g03dtdφ + g33dφ
2 + [g11(dx1)2 + 2g12dx1dx2 + g22(dx2)2] (132)

This can be rewritten as

ds2 = Adt2−B(dφ−ωdt)2−Cdr2−Dr2 (133)

I The Kerr metric is the geometry of a space-time outside a rotating matter distribution, that
is, an axisymmetric solution of vacuum Einstein equations Rµν = 0. BUT, there are less
equations than unknown variables!. GR equations are insufficient to determine all the
functions uniquely.

I Additional constraints are needed:

I Space-time geometry reduces to Minkowski for r → ∞.
I There exists a smooth closed convex event horizon outside which the geometry is

non-singular

I Under these conditions, the solution is UNIQUE (Theorems by Carter, Israel,...)
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The Kerr metric

I Due to lack of spherical symmetry physicists struggled to find the solution until 1963
(Kerr). Mental note: no Birkhoff’s theorem!.

I In Boyer-Lindquist form, the Kerr metric reads8

ds2 =
(

1− rS r
Σ

)
dt2 +

2rSar sin2 θ

Σ
dtdφ− Σ

∆
dr2−Σdθ

2 (134)

−
(

r2 + a2 +
rS ra2 sin2 θ

Σ

)
sin2

θdφ
2 (135)

with the definitions

rS = 2M (136)

Σ = r2 + a2 cos2
θ (137)

∆ = r2− rS r + a2 (138)

8R. Kerr, “Gravitational Field of a Spinning Mass as an Example of Algebraically Special Metrics” Physical Review Letters. 11
(1963) 237
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The Kerr and Kerr-Newman metrics

I The Kerr metric describes the spacetime geometry outside of body of mass M rotating
angular momentum J = aM (a is the spin parameter). This follows from asymptotic limit:

ds2 = −
[

1− 2M
r

+ O(r−2)

]
dt2 +

[
4aM sin2 θ

r
+ O(r−2)

]
dtdφ

+
[
1 + O(r−1)

]
(dr2 + r2dΩ2) , (139)

which is Lense-Thirring metric of a rotating spherical body on its weak-field limit.

I The Kerr metric can be extended to include the electric charge via the vector potential

Aµ = (Qr/ρ
2,0,0,−aQr sin2

θ/ρ
2) (140)

I Just add a contribution Q2 in ∆ = r2− rS r −a2 of Kerr to obtain Kerr-Newman.

I Theorem (of uniqueness): The most general axisymmetric solution of the Einstein
vacuum field equations is given by the Kerr-Newman one, characterized by mass M,
charge Q, and angular momentum J.
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Properties of the Kerr metric - I

I Two physically relevant surfaces. The first one, given by grr = ∆ = 0, reads

r± = M±
√

M2−a2 (141)

I This is the analogue of both the event horizon and the Cauchy horizon of the spherically
symmetric counterpart, provided that M2 ≥ a2. For the M = a2 we have extreme black
holes, which set the limit of maximum rotation to J = Ma (angular momentum is limited by
mass).

I The second one corresponds to gtt = 0:

r± = M±
√

M2−a2 cos2 θ (142)

Due to the contribution of the cos2 θ, this is an outer surface representing a flattened
sphere that touches the event horizon at the poles of the rotation axis θ = π/2.
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Properties of the Kerr metric - II. Ergosphere

I The space between these two surfaces is known as the ergosphere. Since in this region
gtt is negative, any particles suffers a frame dragging effect, that is, it unavoidably
co-rotates with the black hole.

I To prove it, let us consider the emission of a photon at r = θ =constant. The
corresponding line element yields

0 = ds2 = gtt dt2 + 2gtφdtdφ + gφφdφ
2 (143)

which allows to solve for the corresponding angular velocity as

Ω± ≡
dφ

dt
=
−gtφ

gφφ

∓

√
g2

tφ−gtt gφφ

gφφ

(144)

I Therefore, for an observer with four-velocity uµ = (ut ,0,0,uφ) and ds2 > 0, and bearing
in mind that gtφ < 0, the values permitted for the angular velocity are given by

Ω− <
dφ

dt
< Ω+ (145)

I For every other observer outside of the ergoregion, in which gtt > 0 it is verified√
g2

tφ−gtt gφφ/gφφ < gtφ/gφφ so that Ω− < 0 and therefore there is no restriction in the

sign of the angular velocity.
I The above fact is a manifestation of the frame-dragging effect, namely, the state of

rotating of a body affects the local notion of inertial reference system.
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Properties of the Kerr metric - III. Ergosphere and ZAMOs

I The closest analogue to an “static” observer in the ergoregion to a rotating body is the
one who is at rest with respect to the t =constant hypersurfaces, i.e., satisfying
uµ ∝ ∇µt = (gtt ,0,0,gtφ.

I These are the observers who have zero angular momentum (ZAMO: zero angular
momentum observers))in their proper frame at large distances.

I Since pµ ∝ uµ one has pφ = gtφpt + gφφpφ ∝ gtφgtt + gφφgtφ = gµφgtµ = δt
φ

= 0 and

using the fact that pt = gtt pt and pφ = gtφpt (since for these observers its momentum in
the direction of the rotation axis vanishes, pφ = 0) we can compute

dφ

dt
=

dφ

du
du
dt

=
uφ

ut =
pφ

pt =
gtφ

gtt =−
gtφ

gφφ

(146)

I For the Kerr black hole this yields the result

ΩZAMO =
a(r2 + a2−∆)

(r2 + a2)2−a2∆sin2 θ
(147)

I At the event horizon location, r → r+, this yield the result (since ∆ = 0 there)

ΩH =
a

r2
+ + a2

(148)

I Since this is the largest velocity every observer can take within the ergosphere, it is
usually understood as the velocity the event horizon itself rotates.
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Properties of the Kerr metric - III

I Note that the zeroes of both gtt and grr correspond to non-essential singularities, that is,
they are simply coordinate singularitie). From the curvature scalar Rα

βγδRα
βγδ ∼ 1/ρ6

one finds intrinsic singularities of the metric at

Σ = 0→ (r = 0,θ = π/2) (149)

Since this corresponds to the edge of a disk it is called a ring singularity.
Exercise : Is it the ring singularity avoidable by any observer?.
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Properties of the Kerr metric - IV

Figure: The Kerr-Newman black hole

Exercise : Can you write the Kerr metric in Eddington-Filkenstein coordinates?.

Exercise : Can particles run away from the ergosphere?.

Exercise : Can the ring singularity be avoided?.
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Properties of the Kerr metric - III: Energy extraction

I Penrose process : suppose an asymptotic observer A with 4-velocity
uµ = ∂t = (1,0,0,0) who drops into the black hole a particle with momentum pA and
energy EA = pAt , which subsequently decays into two particles as EA = EB + EC .

I Within the ergoregion, where gtt < 0, the vector ξ = ∂t is space-like, and therefore
pt = pµξν is not necessarily positive. Therefore, it is possible for particle B to have
EB < 0, which implies that the asymptotic observer would measure an energy
EC = EA−EB = EA + |EB |> EA so that the emitted particle has a larger energy than the
original one.

I This energy is extracted from the rotational energy of the black hole, which is therefore
slowed down.

I Superradiance: The increase in the dispersed radiation by a body as compared to the
incident one.

I In the simplest case one considers a scalar field ψ = Re(ψ0e−iωt eiωφ) scattered against
the black hole. One can then compute the temporal average of the scalar field flux
through the normal nµ to the event horizon as

< jµnµ > = < (∇t ψ)2 > + < (∇t ψ)(∇φψ) >=< Re(ψ0)2
ω

2 cos2(mφ−ωt)

+ Im(ψ0)2
ω

2 sin2(mφ−ωt) >−< Re(ψ0)2
ωm cos2(mφ−ωt) +

+ (Imψ0)2
ωm sin2(mφ−ωt) >

1
2

ω(ω−mΩH )|ψ0|2 (150)

I For frequencies 0 < ω < mΩH (where ΩH = a/(r2
+ + a2) is the angular velocity on the

horizon) this flux is negative, which means that the energy measured by an asymptotic
observers is larger than the energy of the ingoing wave: this is the superradiance effect.
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The Newman-Janis trick - I

I It is possible to generate axisymmetric solutions out of a spherically symmetric seed of
the form

ds2 =−f (r)dt2 + f−1(r)dr2 + r2dΩ2 (151)

using a procedure introduced in9. It works as follows:

I Introduce advanced null coordinates du = dt− f−1dr so that the metric becomes

ds2 =−fdu2−2dudr + r2dΩ2 (152)

I To write the contravariant components of the metric in terms of the null tetrad
{lµ, lν,mµ,m̄µ} as gµν =−lµnν− lνnµ + mµm̄ν + mνm̄µ via the identifications

lµ = δ
µ
r ;nµ = δ

µ
u− f

2 δ
µ
r ;mµ = 1√

2r

(
δ

µ
θ

+ i
sinθ

δ
µ
φ

)
(153)

I Allow the coordinates u and r to take complex values. This complexification process is not
unique. Common choices are r → 1

2 (r + r̄) = Re(r) and r → 1
2 (r−1 + r̄−1).

I Perform a complex change of coordinates

u = u′+ iacosθ; r = r ′− iacosθ;θ
′ = θ,φ′ = φ (154)

9E. T. Newman and A. I. Janis, “Note on the Kerr Spinning-Particle Metric”, Journal of Mathematical Physics 6.6 (1965) 915.
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The Newman-Janis trick - II

I Write the tetrads in terms of the new coordinates

l ′µ = δ
µ
r ;n′µ = δ

µ
u−

f̃
2

δ
µ
r ;m′µ =

1√
2(r + iacosθ)

(
δ

µ
θ

+ i
sinθ

δ
µ
θ
− iasinθ(δ

µ
u−δ

µ
r )
)

(155)

where the original function f (r) has been replaced by its complexified one f̃ (r , r̄), and a is
a parameter interpreted as the angular momentum per unit mass.

I Construct the metric gµν from the new tetrad and lower the indices. In Kerr coordinates,
this new metric reads

ds2 =−f̃ (du−asin2
θdφ)2−2(du−asin2

θdφ)(dr + asin2
θdφ) + ρ

2dΩ2 (156)

where ρ2 = a2 + a2 cos2 θ.
I Transforming to Boyer-Lindquist coordinates du = dt ′−g(r)dr and dφ = dφ′−h(r)dr to

remove the cross terms gtr = grφ′ = 0 amounts to the choice g = r2+a2

∆ and h = a/∆

with ∆ = f̃ρ2 + a2 sin2 θ to finally achieve

ds2 =−f̃ dt2 +
ρ2

∆
dr2 + ρ

2dθ
2 +

Σ2

ρ2 sin2
θdφ

2 + 2a(̃f −1)sin2
θdtdφ (157)

I This procedure works as long as ∆ does not depend on θ, yet one still has to verify that
the solution obtained this way does verify Einstein’s equations.

I Examples that work: Kerr-Newman solution with f = 1− 2M
r + Q2

r2 , non-linear
electrodynamics...
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LESSON V: SPACE-TIME SINGULARITIES
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Space-time singularities

I Singularities signal a breakdown of GR in that its classical description cannot be expected
to be valid at the extreme conditions near the center of black holes.

I On dimensional grounds one expects GR to break at scales characterized by Planck’s
length

lP =

(
~
c3

)1/2

∼ 10−33cm (158)

I If we see space-time singularities as indicative of a physically troublesome region, a
natural guess is that something is going on ill with the geometry. Thus one would be
tempted to define a space-time singularity as a “place” where curvature “blows up” or
shows any other pathological behaviour.

I However, space-time singularities are fundamentally different from singularities on the
fields living on a fixed space-time background! (e.g. Coulomb’s divergence in classical
electrodynamics). Indeed, a space-time is formally defined as a manifold M with a metric
gµν living on it, so formally a space-time is not part of the manifold.

I We might be tempted to use curvature scalars (to avoid singularities that can be removed
out of a coordinate choice) BUT

I Space-times can be pathological despite all curvature scalars being finite.
I Curvature divergences are not necessarily linked to any pathological behaviour!.
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Geodesic incompleteness

I Where else can be look at?.
I A path of a particle in free-fall is given by a time-like geodesic. Light rays and the

transmission of information are linked to null geodesics.
I It thus seems reasonable to demand any non-singular space-time to be, at least, null and

time-like geodesically complete: in a physically consistent theory nothing should cease
to exist suddenly or “emerge” from nowhere!.

I CAVEAT 1: We want to avoid the existence of space-times that are otherwise non-singular
but have artificially removed points that can be mend by plugging back the removed
patch. In technical terms this is call an Inextendible space-times: there is no way the
space-time can be further extended.

I CAVEAT 2: There exist space-times which are time-like and null geodesically complete
but contains inextendible time-like curves of bounded acceleration which have finite
proper length (Geroch): that is, a rocketship with a sufficiently large but finite amount of
fuel could end up its existence in finite proper time.
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Raychaudhuri equation and focusing of geodesics - I

I Let us start with the Bianchi identity for a vector field

(∇µ∇ν−∇ν∇µ)uα = Rα
ρµνuρ (159)

I Contracting α with µ and then with uν one finds

uν
∇µ∇νuµ−uν

∇ν∇µuµ = Rρνuρuν (160)

I Using Leibniz rule for the covariant derivative:

uν
∇ν∇µuµ + ∇µuν∇

νuµ−∇µ(uν
∇νuµ) + Rρνuρuν = 0 (161)

I If we assume uµ to be a time-like geodesic vector field normal to a space-like
hypersurface, then uν∇νuµ = 0 and the third term in the equation above vanishes

I Let us introduce now the spacial metric hµν = gµν + uµνν and define the following objects:

Expansion : θ≡ hµν∇
νuµ (162)

Shear : σµν ≡ ∇(µuν)−
1
3

θhµν (163)

Twist : ωµν ≡ ∇[νuµ] (164)
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Raychaudhuri equation and focusing of geodesics - II

I This way Raychaudhuri equation reads

uρ
∇ρθ =

dθ

dλ
=−1

3
θ

2−σµνσ
µν + ωµνω

µν−Rρνuρuν (165)

I Parametrizing geodesics by their proper time, uµ = ∇µλ makes the twist term to vanish.
I The term σµνσµν is clearly non-negative because it is a“purely spatial” tensor.
I Then the sign of expansion will be determined by that of Rρνuρuν. If the latter is

non-negative (congruence conditions), i.e.

Rρνuρuν > 0 (166)

then it follows that

dθ

dλ
+

1
3

θ
2 ≤ 0→ dθ−1

dλ
≥ 1

3
→ θ

−1(λ)≥ θ
−1
0 +

λ

3
(167)

I The above equation implies that starting from the initial “time” θ0 the time-like null
geodesic will reach θ =−∞ within a proper time less than 3/|θ0|. This is called a
“focusing effect”.

I Similarly, one can prove the focusing effect for null geodesics with the affine time interval
[0,2/|θ0|.
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Energy conditions

I The focusing effect is a geometric condition independent of the particular theory. BUT, via
GR equations

Rρνuρuν = Tµνuµuν (168)

for uν null. Thus is Tµνuµuν > 0, the focusing effect holds. This is related to the ENERGY
CONDITIONS.

I For a perfect fluid energy-momentum tensor (includes scalar and electromagnetic fields,
among many others):

Tµν = (ρ + P)uµuν + Pgµν (169)

where uµuµ =−1 (time-like) with ρ and P energy density and pressure of the fluid. In a
comoving system this energy-momentum tensor reads T µ

ν = diag(−ρ,p,p,p).
I There are four main kinds of energy conditions, which for a (very general)

energy-momentum tensor T µ
ν = diag(−ρ,p1,p2,p3) read

I Null energy condition (NEC): Tµνnµnν ≥ 0→ ρ + pi ≥ 0 with nµ a null vector. The
energy density has to be positive if it is measured by an observer who goes
through a null curve.

I Weak energy condition (WEC): Tµνuµuν > 0→ ρ≥ 0,ρ + pi ≥ 0 with uµ a
time-like vector: the energy density as measured by a local time-like observer is
non-negative.

I Strong energy condition (SEC): Tµνuµuν ≥−T/2→ ρ + ∑i pi ≥ 0,ρ + Pi ≥ 0:
gravity is attractive (violated in models of cosmic acceleration and inflation.

I Dominant energy condition (DEC): −T µ
νuν is a future-oriented time-like or null

quantity→ ρ≥ 0,ρ≥ |pi |: speed of energy flow of matter is less than the speed of
light.
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Singularity theorems - I: Time-like geodesics

I A Cauchy surface Σ in a spacetime M is a closed achronal set satisfying that D(Σ) = M.
A spacetime M is said to be globally hyperbolic if it contains a Cauchy surface.

I There are two main singularity theorems related to time-like geodesics.
I The first theorem assumes more but proves more too: If a (non-extensible) space-time

(M,gµν), satisfies the following conditions

I Rµνuµuν ≥ 0 for every time-like vector uµ.
I M contains a space-like surface S whose future expansion verifies that

θ(p)≤ θ0 ≤ 0∀p ∈ S.

then every future-pointing time-like curve starting from θ0 has length at most 3/|θ0|.
I Since global hyperbolicity seems to be too a strong condition which could be false in

certain space-times, one can re-formulate the theorem to avoid this assumption, while
playing the price that the trapped hypersurface must be compact, i.e., we are working with
closed universes or with bounded regions of them, like black holes.

I In the second theorem, if a (non-extensible) strongly causal space-time (M,gµν)

satisfies the following conditions:
I Rµνuµuν ≥ 0 for every time-like vector uµ.
I M contains a compact, edgeless, achronal, smooth space-like hypersurface S with

future convergence θ(p)≤ θ0 ≤ 0.
then, there is at least one future inextendible future directed time-like geodesic starting in
S whose length is no greater than 3/|θ0|.
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Singularity theorems - II: Null geodesics

I First singularity theorem for null geodesics: If a (non-extensible) space-time (M,gµν),
satisfies the following conditions

I Rµνuµuν ≥ 0 for every null vector uµ.
I M contains a non-compact, connected Cauchy hypersurface.
I M contains a surface S whose future expansion verifies that θ(p)≤ θ0 ≤ 0∀p ∈ S.

then (M,gµν) contains at least one incomplete (future) null geodesic curve.

I Second singularity theorem for null geodesics:If a (non-extensible) space-time
(M,gµν), satisfies the following conditions

I Rµνuµuν ≥ 0 for every null vector uµ.
I Each (null or time-like) geodesic has a point such that u[ρRα]βλ[µuσ]u

βuλ 6= 0.
I There are no closed causal curves.
I At least one of the following properties hold:

I M contains a compact achronal set without edge.
I M contains a future-trapped surface.
I There is a point p ∈M such that the expansion of the future-directed null

geodesics emanating from p becomes negative along each geodesic in the
congruence.

then (M,gµν) contains at least one incomplete time-like or null geodesic.
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Important comments

I The non-extensibility requirement is essential: it implies that geodesic completeness
cannot be restored by extending further the manifold to add further points to be occupied
by the observer: for instance, Minkowski space-time with a single point removed it is
geodesically incomplete, but not maximal, since it can be extended simply by restoring the
point back to the manifold.

I This is a sufficient condition for singular space-times.

I Theorems DO TELL US NOTHING about the behaviour of curvature scalars. In other
words, the divergence of some curvature scalars DO NOT NECESSARILY IMPLY the
existence of a singularity, either in terms of geodesic completeness or other criteria.
Actual counter-examples do exist.

I Indeed, the concept of geodesic completeness precludes any idea of “things” blowing up
at some point!.

I BONUS TRACK: the development of a singularity is unavoidable in full gravitational
collapse.
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Upgrades of the singularity theorems

I A pattern can be identified in all singularity theorems: if a sufficiently differentiable
manifold M satisfies:

I A condition on curvature (to ensure focusing).
I A condition on causality (to avoid uncomfortable situations like closed time-like

curves and to guarantee the existence of geodesics with maximum proper time
connecting events).

I An initial/boundary condition to evolve data from.

then M contains incomplete geodesics.

I Despite 60 years of research on this topic the theorems are still oblivious to the every
other aspect of singularities (strength, character, removal) beyond the conditions under
which occur.
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Detailed theory of geodesics - I

I Geodesics are given by the equation

d2xµ

dλ2 + Γ
µ
αβ

dxα

dλ

dxβ

dλ
= 0 (170)

where Γ
µ
αβ

are the components of the connection (here the Christoffel symbols).

I The geodesic equation can be derived from the action

L =
1
2

∫
dλgµν

dxµ

dλ

dxν

dλ
(171)

I Consider now a static, spherically symmetric line element

ds2 =−A(r)dt2 + B−1(r)dr2 + r2dΩ2 (172)

therefore

L =
1
2

∫
dλ

[
−A(r)ṫ2 + B(r)−1 ṙ2 + r2

θ̇
2 + r2 sin2

θφ̇
2
]

(173)

I The momenta associated to the variables (t, r ,θ,φ) are

pt =− ∂L

∂ṫ
;pr =

∂L
∂ṙ

=
ṙ

B(r)
;pθ =

∂L

∂θ̇
= r2

θ̇;pφ =
∂L

∂φ̇
= r2 sin2

θφ̇ (174)
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Detailed theory of geodesics - II

I From the Hamiltonian H =−pt ṫ + pr ṙ + pθθ̇ + pφφ̇−L (for this case it actually coincides
with the Lagrangian), the geodesic equations are written as

ṙµ =
∂H
∂pµ

= gµνpν; ṗµ =− ∂H
∂xµ =−1

2
(∂µgαβ)pαpβ→ ṗt = ṗφ = 0 (175)

Thus pt and pφ are constants of motion. These equations also imply that dH/dλ = 0→ H
is another constant of motion. So, setting the motion at θ = π/2 by convenience, we have:

pt =
dt
dλ

A(r) = E; pθ =
dφ

dλ
r2 sin2

θ = L (176)

2H = − p2
t

A(r)
+ B(r)p2

r +
pθ

r2 +
p2

φ

r2 sin2 θ
=− E2

A(r)
+

ṙ2

B(r)
+

L2

r2 (177)

I When H 6= 0 we can always re-scale λ→ λ/
√

2|H| so only the sign of H = k/2 is
physically relevant. Thus we can call k = 0 as null (photons), k =−1 as time-like
(particles) and k = +1 as space-like. This way the geodesic equation reads:

A(r)

B(r)

(
dr
dλ

)2

= E2−A(r)

(
L2

r2 − k

)2

(178)

This is the geodesic equation for any static, spherically symmetric space-times. E and L
are physically interpreted as the energy per unit mass and the angular momentum per
unit mass.
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Incomplete geodesics in the Schwarzschild space-time

I For a Schwarzschild black hole A(r) = B(r) = 1− rS/r , so that the geodesic equation
reads (

dr
dλ

)2

= E2−A(r)

(
L2

r2 − k2
)2

(179)

This has the same structure as a particle with energy E moving in an effective potential

Veff =
(

1− rS

r

)(L2

r2 − k

)
(180)

Near the center of the black hole one has Veff =− rS
r

(
L2

r2 − k2
)2

which is an infinitely

attractive potential towards the black hole center.
I Considering radial (L = 0) time-like (k =−1) geodesics, this equation is integrated as

λ(r) = λ0−
2
3

√
r3/rS (181)

where λ0 is the value of the affine parameter at r = 0. These geodesics are incomplete in
the future, because r ≥ 0.
Exercise : Are there any more incomplete geodesic in the Schwarzschild geometry?.

Exercise [green]: Do the same with the Reissner-Nordström geometry,
a = 1− rS/r + Q2/r2. Does it contains any incomplete geodesic? (hint: look for null
radial geodesics).
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Physical impact of curvature divergences - I. Congruences

I Curvature divergences can be used to estimate the physical effects of strong gravitational
fields.

I Accepted criteria in the literature (Ellis, Schmidt):

I STRONG singularity: all objects falling into it are crushed to zero volume.
I WEAK singularity: objects have a change to remain bound together.

I IDEA: idealize a body as a set of points following geodesics of the background metric and
study the evolution of the separation between nearby geodesics to determine its impact in
the body.

I Mathematically one defines a CONGRUENCE OF GEODESICS labelled by two
parameters: xµ = xµ(λ,ξ), where λ: affine parameter, ξ: identifies the different geodesics
in the congruence. For a given geodesic uµ ≡ ∂xµ

∂λ
|ξ=const is the tangent vector, and the

separation between nearby geodesics (at fixed λ) is measured by the JACOBI VECTOR
fields

Z µ ≡ ∂xµ

∂ξ
(182)

which satisfies the GEODESIC DEVIATION EQUATION:

d2Z α

dλ2 + Rα
βµνZ µuν = 0 (183)
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Impact of curvature divergences - II. Volume invariants

I Using an orthonormal tetrad parallel-transported along the congruence allows to define a
basis {e1,e2,e3}, such that the Jacobi fields can be projected into that basis as
Z aea(a = 1,2,3).

I Solving the geodesic deviation equation yields six independent Jacobi fields: Z a and
DZ a/dλ starting at some point λi :

I If Z a(λi ) are not all zero then Z a(λ) = Aa
b(λ)Z b(λi ), where Aa

b is some matrix
(the identity at λ = λi ).

I If Z a(λi ) are all zero then Z a(λ) = Aa
b(λ) dZ b

dλ
|λ=λi

.

I With three linearly independent non-vanishg solutions Zi = Z a
i ea one can define a

VOLUME ELEMENT as V(λ) = det[Z a
i ,Z

b
i ,Z

c
i ] which can be written as

V(λ) = det[A(λ)]V(λi ) (184)

and then a STRONG SINGULARITY is met if

lim
λ→0

V(λ) = 0 (185)

Exercise : prove that Schwarzschild’s singularity is STRONG.
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Accelerated observers - I

I By the principle of general covariance, observers with arbitrary motions should also have
complete paths. No discrimination is allowed between different observers - they all have
the same right to live.

I In presence of acceleration, the unitary tangent vector to the timelike curve xµ(s) will not
be parallel transported along it, but will change as

Duµ

ds
≡ uµ

∇µuν = aν (186)

where aµ is the acceleration vector and the covariant derivative is defined as usual as
DZ µ

ds = dZ µ

ds + Γ
µ
ρσZ ρuσ.

I The above equation can be rewritten on a Frenet-Serret frame as

Dλ(a)

ds
= λ(b)A(b)

(a) (187)

where A≡ A(b)
(a) is a 4×4 matrix of the form

A(b)
(a) =


0 k(s) 0 0

k(s) 0 τ1(s) 0
0 −τ1(s) 0 τ2(s)
0 0 −τ2(s) 0

 (188)

where the functions {k(s),τ1(s),τ2(s)} are called the curvature, first torsion and second
torsion of the curve γ(s),
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Accelerated observers - II

I If one assumes that there is only linear acceleration, i.e., there is no accelerated motion in
the angular directions (τ1 = τ2 = 0), then the motion is described by

(
dx
dλ

)2

+ Veff (x) =

E +
∫ x

x0

k(λ)dx ′√
1 + L2

r2(x ′)

2

(189)

where Veff (x) = C(x)(L2/r2(x)− k) is the usual effective potential of the geodesic case.

I One can use this expression to show that if we would like the accelerated curve to
“escape” from the light-cone, it would need to achieve infinite energy, and consequently,
the acceleration needed would also be infinite.

I Is there any physical scenario in which the trajectories of free-falling particles are
complete, but some trajectories of accelerating observers are not?. Examples by Geroch
(1968).
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Regularity tests with scattering of waves

I As another test to verify that curvature divergences do not affect the well-posedness of
physical laws in a given space-time, one can consider the propagation of scalar waves in
such a background.

I Taking the scalar field equation (�−m2)φ = 0, we decompose it in modes of the form
φω,lm = e−iωt Ylm(θ,ϕ)fω,l (x)/r(x), where Ylm(θ,ϕ) represents spherical harmonics.

I Using the radial coordinate y =
∫

dx/C, this way the fω,l (x) are governed by a
Schrödinger-like equation of the form

−fyy + Veff f = ω
2f (190)

where

Veff =
ryy

r
+ C(r)

(
m2 +

l(l + 1)

r2

)
(191)

I Using the mode decomposition, we thus define an incoming wave packet from past null
infinity (in the naked case, or from the inner horizon in the black hole case) and study its
interaction with the wormhole. The behaviour will depend dramatically on the angular
momentum of the incident mode.

I One then needs to expand the above potential in the potentially problematic region.
Compute transmission coefficients for a given frequency. Are they well defined or not?.
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LESSON VI: EXOTIC AND ALTERNATIVE COMPACT OBJECTS
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Black hole mimickers

I Black hole mimicker encompass a plethora of objects that may look as a black hole but it
is conceptually distinguished from it given the absence of an event horizon, i.e., the yare
horizonless.

I A full taxonomy on these objects is complicated given the fact that the mechanisms under
which they can go disguised as black holes and under which observational channels vary
from model to model. Moreover, a given model may contain at the same time both black
hole (Kerr-like) and horizonless solutions.

I The newly born field of multimessenger astronomy allow us to perform cross-tests with
different carriers to unveil the nature of a given black hole (mimicker) candidate.
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Non-linear electrodynamics - I

I Charge is usually neglected in astrophysical settings, since black holes tend to discharge
due to several processes, for instance, via neutralization because of the highly ionized
environment around black holes.

I However, the presence of a tiny charge is very relevant to discuss the innermost regions
of black holes. Near those regions, the strong gravitational fields can induce
pair-production of charged particles inducing corrections to Maxwell electrodynamics.
How to compute them?.

I Classical models of the electromagnetic field have been considered for decades in order
to remove the divergence of electron’s self-energy.

I At low curvatures, backreaction of the gravitational field can be neglected and such
corrections can be incorporated via effective models.

I Effective models of electrodynamics can be captured by non-linear electrodynamics

Sm =
1

8π

∫
d4x
√
−gϕ(X ,Y ) (192)

where

X =−1
2

FµνF µν;Y =−1
2

FµνF∗µν (193)

with Fµν = ∂µAν−∂νAµ is the field strength tensor of the vector potential Aµ, and
F?µν = 1

2 εµναβF αβ is its dual.

Exercise : if we introduce electric E i =−F 0i and magnetic Bi =− 1
2 εijk Fjk fields, can

you write F µν and F∗µν (hint: matrix representations are always useful for this).
Exercise : Can you tell me the form of the objects X ,Y? (hint: E i ,Bi are components of

vectors, but X ,Y need to be scalars).
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NEDs - II. Action and field equations

I The gravitational action is thus written as

S = SG + SNED =
∫

d4x
√
−g

[
R

2κ2 −ϕ(X ,Y )

]
(194)

I Matter field equations ( Exercise : prove it).

∇µ [ϕX F µν + ϕY F ∗µν] = 0 (195)

+ Bianchi identity ∇µF ∗µν = 0

I Energy-momentum tensor

Tµν =− 2√
−g

δL
δgµν

= 2
(
ϕX FµαF α

ν−ϕY FµαF∗αν

)
−gµνϕ(X ,Y ) (196)

I We look again for electrostatic spherically symmetric solutions F tr ≡ E(r) 6= 0. In such a
case X = E2 and Y = 0 and the energy-momentum tensor reads

T 0
0 = T 1

1 = 2ϕX E2−ϕ;T 2
2 = T 3

3 =−ϕ (197)
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NEDs - III. Integration of the gravitational equations

I From the symmetry T 0
0 = T 1

1 one can reduce the static, spherically symmetric line
element to (Exercise [easy]: prove it):

ds2 = A(r)dt2−A(r)−1dr2− r2dΩ2 (198)

such that the electromagnetic field equations can be integrated as

r2
ϕX E(r) = Q (199)

Comment 1: Note that these equations are independent of the metric components. The
same as in flat space!.
Comment 2: Because of Bianchi identity ∇µGµν = 0, this equation is compatible with
Einstein’s equations (i.e., one of them can be rewritten in terms of the others).

I The Einstein equations read explicitly (Exercise: prove it - time-consuming but not hard):

d
dr

(rA(r)− r) = −8πr2T 0
0 =−8πr2(2ϕX E2−ϕ) (200)

d2

dr2 (rA(r)) = −16πrT 2
2 = 16πrϕ (201)

which can be readily integrated as

A(r ,Q) = 1− 2M
r

+
8π

r

∫
∞

r
R2T 0

0(R,Q)dR (202)

M: asymptotic mass, and εex = 4π
∫

∞

r R2T 0
0(R,Q)dR is the contribution total energy in

flat sphere outside a sphere of radius r .
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NEDs - IV. Examples and properties

I Maxwell electrodynamics:

ϕ(X) = αX ;E(r) =
Q

αr2 ; r2T 0
0 =

Q2

αr2 ;εex (r ,Q) =
4π

αr
;A(r ,Q) = 1− 2M

r
+

8πQ2

αr
(203)

I Born-Infeld electrodynamics:

ϕ(X) =
2
µ2 (1−

√
1−µ2X − µ4

4
Y 2) (204)

E(r ,Q) =
Q√

r4 + µ2Q2
;T 0

0(r ,Q) = 2

√
r4 + µ2Q2− r2

µ2r2 (205)

εex (r ,Q) =
8πr
3µ2 [r2−

√
r4 + µ2Q2 +

2µ2Q2

r2 2F1(
1
4
,

1
2
,

5
4
,−µ2Q2

r4 )](FINITE ENERGY!)

1 2 3 4

r

-10

-5

5

10

A(r)

Exercise Determine the conditions for different horizons [hint: check the behaviour at the
center, and bear in mind the finiteness of the energy].
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NEDs - V. Regular black holes: de Sitter cores

I Consider an anisotropic fluid Tµ
ν = diag(−ρ,pr ,p⊥,p⊥).

I Under the assumptions of i) regularity of density ρ(r), ii) finiteness of the mass parameter
m(r) characterizing the gravitational configurations and iii) dominant energy condition, the
most general static, spherically symmetric metric holding regularity of all curvature scalars
is given by ds2 =−f (r)dt2 + f−1(r)dr2 + r2dΩ2 with

f (r) = 1− 2m(r)

r
;m(r) = 4π

∫
d4rr2

ρ(r)dr (206)

and has a de Sitter asymptotic at r → 0, that is

f (r) = 1− Λr2

3
(207)

where the energy-momentum tensor is that of a cosmological constant term, Tµν = Λgµν.
I No-go theorem (K. A. Bronnikov, Phys. Rev. Lett. 85 (2000) 4641): For a NED to achieve

a regular de Sitter core at r → 0 one must have ϕ→ 0 and ϕX → 1 as X → 0 (i.e. a
Maxwellain behaviour there), since the regularity of the energy-momentum tensor
requires |XϕX |< ∞. However, the first integral (squared) implies Xϕ2

X = q2/r4→ ∞ at
r = 0, which entails that ϕ→ ∞ as X → 0, which is a strongly non-Maxwellian behaviour.

I Therefore, a regular electrically charged structure is not compatible with the Maxwell
weak field limit at the center, and regular black holes in electrically charged NEDs are not
possible.
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Wormholes - I. Main elements

I Wormholes are hypothetical tunnels connecting space-time regions that are causally
disconnected.

I Let us assume a static, spherically symmetric space-time possessing two asymptotically
flat regions, conveniently recast as (remember that only two functions are independent):

ds2 = e2φ(r)dt2−dl2− r2(l)dΩ2 (208)

I Comments:

I The coordinate l (proper time) covers the entire range (−∞,+∞).
I If there are no horizons (so-called traversable wormholes) then φ(l) must be

everywhere finite.
I Two asymptotically flat regions requires liml→±∞(r(l)/l)→ 1, which guarantees

liml→±∞ φ(l) = φ± finite.
I The radius of the wormhole throat is defined by r0 = min(r(l)).

Diego Rubiera-Garcia Complutense University of Madrid, Spain drubiera@ucm.esElementary and advanced black hole physics: a modern practitioner’s guide.



Wormholes - II. Coordinates and throat

I In Schwarzschild coordinates, Eq.(208) can re-cast as

ds2 =−e2φ±(l)dt2 +
dr2

1− b±(r)
r

+ r2dΩ2 (209)

I Comments:
I Two coordinate patches are now required, each covering [r0,∞] and joined at r0.
I The relation between coordinates can be written as

l(r) =±
∫ r

r0

dr ′√
1− b±(r ′)

r ′

(210)

I The mass of the object as seen from asymptotic infinity is b± = 2GM±.
I At the throat dr/dl = 0 (r is a minimum at l = 0). Thus as one moves away from

the throat, d2r/dl2 > 0, which implies the flare-out condition: b′(r) < b(r)/r

Figure: Typical shape of a wormhole structure
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Wormholes - III. Violation of energy conditions

I The non-zero components of the energy-momentum tensor read

ρ = −T 0
0

b′

8πr2 (211)

τ = −T 1
1 =

1
8π

[
b
r3 −2

(
1− b

r

)
φ′

r

]
(212)

p = T 2
2 = T 3

3 =
1

8π

[
(1− b

r
)

[
φ
′′+ φ

′(φ
′+

1
r

)

]
− 1

2r2 (b′r −b)(φ
′+

1
r

)

]
(213)

I At the wormhole throat

ρ(r0) =
b′(r0)

8πr2
0

;τ(r0) =
1

8πr2
0

;P(r0) =
1−b′(r0)

16πr0
(φ
′+

1
r0

) (214)

I On the other hand

8π(ρ− τ) =−e2φ

r

[
e−2φ(1−b/r)

]′
(215)

and we know that e−2φ(1−b/r)|r0 = 0 and that ∀r > r0 one has [e−2φ(1−b/r)]′ = 0 so

ρ(r0)− τ(r0)≤ 0 (216)

which is a violation of the null energy condition!.
Exercise: Probe that wormholes actually violate all pointwise energy conditions (hint: just
look for appropriate combinations of the expressions above].

I Conclusion: wormholes are supported by exotic matter sources...in GR!.
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Junction conditions - I

I Many models of gravitating bodies of both theoretical and observational interest involve
the consideration of two different patches of space-time, glued at some hypersurface
separating the interior from the exterior.

I Let us consider twoo smooth four-dimensional manifolds (M±,gµν), and let us denote by
V± two bounded regions living in M± with boundaries Σ±. These regions are matched at
a time-like hypersurface Σ with the natural identification of their boundaries as Σ+ = Σ−

I The space-time metric gµν is assumed to be well defined through the entire manifold and,
in particular, to be continuous (but not necessarily differentiable) at Σ

I Since there may be discontinuities in several geometric quantities across Σ, the suitable
tool to deal with this scenario is that of tensorial distributions, namely, tensor fields with
compact support on the manifold.

I The distributional form of the stress-energy tensor is given by

T µν = T +
µνθ + T−µν(1−θ) + τµνδ

Σ (217)

where underbars indicate distributions; T±µν are the stress-energy tensors in V±; θ is the
scalar distribution defined by the (locally integrable) Heaviside function, the latter taking
the value of 1 in V +, 0 in V−, and any intermediate reference value in Σ; δ

Σ is a scalar
Delta-type distribution with support on Σ acting upon any test function X as
< δ,X >≡

∫
Σ X ; and τµν accounts for the singular part of the stress-energy tensor on Σ.

I Similarly, the distributional form of the trace of the stress-energy tensor reads

T = T +
θ + T−(1−θ) + τδ

Σ (218)

where τ≡ τµ
µ is the trace of the singular part of the stress-energy tensor.
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Junction conditions - II

I Since R =−κ2T , its distributional version yields the junction condition [T ] = 0, where
brackets represent a discontinuity (“jumps”) across Σ in the quantity contained there. This
condition indicates the need for the continuity of the trace of the stress-energy tensor
across Σ, which was already expected on grounds of continuity and standard
differentiability of the tensorial equations.

I The distributional form of the Einstein tensor takes the form

Gµν = G+
µνθ + G−µν(1−θ) + Gµνδ

Σ (219)

where Gµν represents the singular part of the Einstein tensor on Σ.

I Now, let us introduce nµ as the unit vector normal to Σ defined via ∇µθ = nµδ
Σ, so that

the projector on Σ is defined as
hµν ≡ gµν−nµnν (220)

(commonly known as the first fundamental form), which must be continuous across Σ.

I Gµν can be expressed as
Gµν =−[Kµν] + hµν[K ρ

ρ ] (221)

where
K±µν ≡ hρ

βhσ
µ∇
±
ρ nσ (222)

is the second fundamental form on V±, respectively.
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Junction conditions - III

I The singular part of the Einstein equations Gµν = κ2τµν thus yields the junction condition

−[Kµν] + hµν[K ρ

ρ ] = κ
2
τµν (223)

I Its trace reads
2[K ρ

ρ ] = κ
2
τ (224)

and, therefore, the brane tension in GR is non-vanishing in general.
I The Bianchi identities hold in the distributional sense, that is ∇µGµ

ν = 0, and can be
explicitly written as two sets of equations:

(K +
ρσ + K−ρσ)Gρσ = 2nρnσ[Rρσ]− [R] (225)

DρGρν = −nρhσ
ν [Rρσ] , (226)

where Dρ ≡ hρ
α∇α denotes the covariant derivative on Σ.

I These equations can be properly worked out to yield the two junction conditions

Dρ
τρν = −nρhσ

ν[Tρσ] (227)

(K +
ρσ + K−ρσ)τ

ρσ = 2nρnσ[Tρσ] (228)

I These four conditions close the formalism, and relate the behaviour of the geometrical
quantities with the necessary matter content on the shell Σ (when present).
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Wormholes - IV. Thin-shell wormholes - A

I Thin-shell wormholes arise from surgically matched patches of space-time at the
hypersurface Σ (the throat). The formalism of junction conditions is needed.

I In the hypersurface Σ we have three independent basis vectors ei ≡ ∂/∂ξi with
components eµ

i = ∂xµ/∂ξi , being ξi the coordinates on Σ. The induced metric on Σ is
then expressed as hij = gµνeµ

i eν
j , and we note that nµeµ

i = 0. The second fundamental

form is thus defined by Kij = eµ
i eν

j ∇µnν, which is symmetric.
I Now, differentiating nµeµ

i = 0 with respect to ξj , one can write the useful formula

K±ij =−nµ

(
∂2xµ

∂ξi ∂ξj + Γ
µ±
αβ

∂xα

∂ξi

∂xβ

∂ξj

)
(229)

for the computation of the second fundamental form.
I Let us now introduce two spherically symmetric space-times whose line elements on M±

are

ds2
± =−A±(r±)dt2 +

1
B±(r±)

dr2
±+ r2

±dΩ2 (230)

described by the functions A±(r±),B±(r±), respectively, and where
dΩ2 = dθ2 + sin2 θdϕ2 is the unit volume in the two-spheres.

I The induced line element on the matching hypersurface Σ can be written as

ds2
Σ =−dτ

2 + R2(τ)dΩ2 (231)

which is parameterized in terms of the proper time of an observer comoving with Σ. Here
R is the radius of the shell and 4πR2(τ) measures its area.
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Wormholes - IV. Thin shells - B

I This spherical three-dimensional hypersurface has coordinates
xµ(τ,θ,ϕ) = (t(τ),R(τ),θ,ϕ), and since the tangent vectors to it are eµ

θ
= (0,0,1,0) and

eµ
ϕ = (0,0,0,1), setting the velocity vector as Uµ ≡ dxµ/dτ = (tτ,Rτ,0,0) (where

tτ ≡ dt/dτ,Rτ ≡ dR/dτ), it follows that the normal vector (assumed to be oriented from
M− to M+) must be of the form nµ =±(nt ,nr ,0,0).

I Now, using the fact that nµnν = +1 (space-like character) and nµUµ = 0 (orthogonality
condition) one finds that the components of the normal vector, nt and nr , are given by

nt =
Rτ√
AB

;nr =
√

B + R2
τ (232)

where the metric functions A and B are the evaluation of the metric functions) on M± at
the shell radius r = R(τ). Due to the continuity of the space-time metric across Σ they
must match there.

I It is now immediate to compute the non-vanishing components of the second fundamental
form K i

j = diag(K τ
τ,K θ

θ,K θ
θ) as

K τ
τ

± = ±B2AR + (BAR −ABR)R2
τ + 2ABRττ

2AB
√

B + R2
τ

, (233)

K θ

θ

±
= ±

√
B + R2

τ

R
. (234)

where AR ≡ dA/dR and so on.
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Wormholes - IV. Thin shells - C

I The matter stress-energy tensor on Σ can also be written as a diagonal matrix

Sµ
ν = diag(Sτ

τ,S
θ

θ,S
θ

θ) (235)

with components Sτ
τ =−σ and Sθ

θ
= P , where σ is the surface energy density and P is

the tangential surface pressure.
I The junction conditions allow to relate these components to the jumps in the extrinsic

curvature as
σ =− 1

4π
[K θ

θ] ; P =− 1
8π

([K τ
τ] + [K θ

θ]) (236)

I Given a spherically symmetric line element these equations allow to compute the energy
density and pressure of the fluid supporting the shell, or the other way round.

I The conservation equation yields another equation

σ̇ =−2(σ + P)Ṙ + ΥṘ→ σ
′ =− 2

R (ρ + P) + Υ (237)

where the shape of Υ depends on the choice for the metric functions. For a
Schwarzschild thin-shell wormhole this equations yields σ̇ =−2(σ + P)Ṙ/R.

I The (linear) stability of the wormhole is analyzed by rewriting the equation of motion as

1
2 Ṙ + V(R) = 0 (238)

and expanding in series the potential around an assumed static solution R0.

V(R) = V(R0) + V ′(R0)(R−R0) + 1
2 V ′′(R0)(R−R0)2 + O(R−R0)3 (239)

Since around a static solution Ṙ0 = R̈0 then V(R0) = V ′(R0) = 0 and stability is
achieved if V ′′(R0) > 0.
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Curvature-free charged space-times

I A common trend is to build ad hoc metric components which are free of curvature
singularities everywhere (typically via a dS core)

I Bardeen - perhaps the most well known one and more widely used:

A(r) = 1− 2Mr2

(r2 + Q2)3/2
(240)

I Hayward is an alternative example given by

A(r) = 1− 2Mr2

(r3 + 2Ml2
(241)

supported by a matter field satisfying

ρ =−p =
8
κ2

3M2 l2

(r3 + 2Ml2)2 ;p⊥ =
8
κ2

3M2 l2(r3−Ml2)

(r3 + 2Ml2)3 (242)

I Ayón-Beato-Garcia solution is yet another example supported by an NED and given by

A(r) = 1− 2Mr2

(r2 + Q2)3/2
+

Q2r2

(r2 + Q2)2 (243)

I (Charged) black-bounces

A(x) = 1− 2M
r(x)

+
Q2

r2(x)
(244)

where the function r(x) implements a bouncing, wormhole-like behaviour at x = 0.
Simplest case: r(x) =

√
x2 + a2.
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Compact objects supported by scalar fields

I Finding solutions to GR equations + scalar fields is quite difficult (the symmetry T t
t = T r

r
is no longer there, which overrules the tricks employed for vacuum space-times).

I But there is one exact analytical solution of GR + free real scalar field (Wyman):

ds2
GR =−eνdt2 +

eν

W 4 dy2 +
1

W 2 (dθ
2 + sinθ

2dϕ
2) , (245)

where ν and W are functions of the radial coordinate y . These are coordinates in which
φyy = 0 (thus φ(y) = y ).

I Demanding asymptotic flatness, the metric functions take the form

eν = eβy (246)

W = γ
−1eβy/2 sinh(γy) , (247)

where β =−2M, and γ≡
√

β2 + 2κ2/2. The asymptotic limit corresponds to y → 0,
where the scalar field vanishes, while the center of the (spherical) solution is reached at
y → ∞.

I Central curvature

lim
y→∞

R ≈ κ2e

(
2
√

β2+2κ2+β

)
y

(β2 + 2κ2)2 . (248)

I Incomplete geodesics. Interpretation?.
I Phenomena triggered by scalar fields: superradiance, scalar clouds, boson stars, black

hole bombs,..., numerical analysis is needed!.
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Boson stars

I A (scalar) boson star is supported (in the simplest case) by a Klein-Gordon field with
action

S =
∫ √
−g

(
R
κ2 −∇aΦ̄∇

aΦ−µ2Φ̄Φ

)
d4x , (249)

I It leads to a system of Einstein + Klein-Gordon, leading to a set of three coupled
equations whose resolution requires proper numerical methods and suitable boundary
conditions at the star’s center.

I Similarly, a (vector) Proca star

S =
∫ √
−g

(
R

16π
− 1

4
FabF̄ ab− 1

2
µ2AaĀa

)
d4x , (250)

I It leads to four coupled equations with similar comments on their resolution.

I Typically these objects are not compact enough to hold a critical curve (although
exceptions are known), which nonetheless may act as observational discriminators in
shadow observations under certain circumstances, but can equally imitate black hole
shadows good enough to pass unseen10.

10C. A. R. Herdeiro, A. M. Pombo, E. Radu, P. Cunha, V.P. and N. Sanchis-Gual, JCAP 04 (2021) 051.
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Gravastars

I Gravastars (Gravitational condensate stars) are ultra-compact objects whose radius is
arbitrarily close to the Schwarzschild radius and without a central singularity. The interior
is replaced by a dS core, surrounded by a thin-shell of matter with EOS, and matched to
an external Schwarzschild solution:

ds2 = −f (r)dt2 + h−1(r)dr2 + r2dΩ2 (251)

Region I : 0≤ r ≤ r1,P =−ρ (252)

Region II : r1 ≤ r ≤ r2,P = +ρ (253)

Region III : r1 ≤ r ,P =−ρ (254)

I Therefore, the formalism of thin-shells must be called upon (twice).

I In region I, the dS core satisfies f (r) = Ch(r) = C(1−H2
0 r2) supported by a density

ρ = 3H2
0/8π.

I In region II, the shell satisfies three coupled differential equations, which can be exactly
solved in the infinitely thin-shell limit.
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Hairy black holes

I The uniqueness theorems on black hole physics tell us that The only possible stationary,
axisymmetric, asymptotically flat, solution of GR field equations with spherical topological
horizons is given by the Kerr one. If you add a Maxwell field, then the theorems extend
that solution to the Kerr-Newman one.

I Closely related to it (or perhaps simply a corollary) is the No-hair conjecture, which
states that There are not regular, stable perturbations of a KN BH which cannot be
expressed in terms of a change to mass, charge, or angular momentum change to the
original BH. In other words, every single black hole of the Universe is entirely described by
the trio {M,Q,J}.

I These results, however, do not prevent us for considering alternative black holes coupled
to other matter sources, which may (note the italic) introduce additional charges or hairs
necessary to describe them⇒ hairy black holes.

I The (perhaps) two most common matter sources to produce hairy black holes are scalar
and non-abelian gauge fields.
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On the universality of Kerr’s hypothesis

I 1
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LESSON VII: OBSERVATIONAL SEARCHES WITH LIGHT AND GWS
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Searches with X-ray spectroscopy

I A fuel-exhausted stellar object with mass below the Chandrasekhar’s limit MCh ≈ 1.4M�
unavoidably collapse under its event horizon yielding a black hole.

I Stellar-mass black holes (. 100M�) can be detected basically via X-ray emissions out of
their accretion disks (continuum fitting method and X-ray reflection spectroscopy):
• C. Bambi, “Astrophysical Black Holes: A Review, arXiv: 1906.03871 [astro-ph.HE].

I Historically this was the first evidence (1971) for the existence of black holes in binary star
systems in our galaxy - Cygnux X-1.
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Gravitational waves from black holes - I

I GWs are perturbations in the fabric of space-time. To study them we use linearized
theory, assuming an observer who is far away from a given static matter distribution, in
such a way that we can consider a perturbation upon the Minkowski space-time as

gµν = ηµν + hµν (255)

where the perturbation is assumed to satisfy |hµν| � 1.
I It is more convenient to work in the so-called trace-reverse metric perturbations

h̃µν = hµν−
1
2

ηµνhαhα (256)

I There is an implicit gauge invariance related to the local coordinate transformations
xµ→ xµ + ξµ under which the trace-reversed perturbation transforms as

h̃′µν = h̃µν−∂µξν−∂νξµ + ηµν∂λξ
λ (257)

Using this freedom one can choose the Lorentz gauge ∂µh̃µν = 0, in which one writes

∂
′µh̃′µν(x ′) = ∂

µhµν(x)−�ξν (258)

I In order for the Lorentz gauge to be satisfied, one needs to choose �ξν = ∂µh̃µν so that
the linearized Einstein equations read

Gµν =−1
2
�h̃µν = κ

2Tµν (259)
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Gravitational waves from black holes - II

I In vacuum, the wave equation above reads simply

�h̃µν ≡ ∂µ∂
µh̃µν =

(
− ∂2

∂t2 +~∇2
)

h̃µν = 0 (260)

and its solution is given by a superposition of harmonic solutions as

h̃µν =
∫

d3k(Aµν(~k)eikαxα

+ A?
µν(~k)e−ikαxα

) (261)

where Aµν,A∗µν are the constant (symmetric) polarization tensors, encoding the
information on the amplitude and polarization of the GW, while kα is the constant wave
vector, determining the propagation direction of the GW and its frequency.

I Hilbert’s gauge implies that Aµνkν = 0, i.e., Aµν and kµ are orthogonal, and reads as four
conditions on Aµν reducing its number of independent components from 10 to 6.

I Replacing this solution in the wave equation yields the additional constraint
kµkµ =−k2

0 + (k2
1 + k2

2 + k2
3 ) = 0, which means that the wave propagates on the light

cone, i.e., its velocity is v = c and its frequency ω = k0.
I There is a further gauge freedom related to the four components of ξµ: this further

reduces the number of components of Aµν to just 2!.
I One choice is the transverse–traceless or TT gauge, in which i) only the spatial

components of h̃µν are non-vanishing, h̃0i = 0, which means that the GW is transverse to
its direction of propagation and ii) the sum of its diagonal terms is vanishing,
hµµ = h00 + h11 + h22 + h33 = 0. In this gauge we denote hTT

µν = h̃µν = hµν.
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Gravitational waves from black holes - III

I Therefore, we can write the two independent components of the polarization tensor as
(assuming a GW propagating in the z-direction) as

Aµν = h+ε
µν

+ + h×ε
µν

× (262)

where h+,h× are the (dimensionless= amplitudes of each mode, while the unit
polarization tensors ε

µν

+ ,ε
µν

× are given by

ε
µν

+ =


0 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 0

 ;ε
µν

× =


0 0 0 0
0 0 1 0
0 1 0 0
0 0 0 0

 (263)

I The effect of a passing GW can be analyzed from the geodesic deviation equation

d2ξk

dt2 =−Rk TT
0j0ξ

j (264)

where we have assumed to geodesic trajectories along their proper times xµ(τ) and

xµ(τ) + ξµ(τ), while Rk TT
0j0 =− 1

2
∂2

∂t2 hTT
jk ≈ ∂2Φ

∂x j ∂xk is the Riemann tensor in the linearized
theory in the TT gauge, and with the last approximation corresponding to the Newtonian
regime.

I The tidal force acting upon a particle of mass m is thus given by f k ≈−mRk TT
0j0ξj .
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Gravitational waves from black holes - IV

I Let us consider a GW with polarization + only, travelling in the z-direction:

hµν = h+ε
µν cos[ω(t− z)] (265)

I Let two free-falling particles with an original separation ξx
0 along the x-direction, and

another two placed along the y -direction, hit by the GW. After the passing of the GW, the
respective distances will evolve as

ξx

ξx
0

= 1− 1
2

h+ cos[ω(t− z)];
ξy

ξ
y
0

= 1 +
1
2

h+ cos[ω(t− z)] (266)

I This implies that the coordinate distances along the two axes oscillates out of phase:
when the distance between the the two particles along the x-axis is maximum, then along
the y -axis is minimum and vice-versa, and their are switched after half a period.

I Should we choose the polarization ×, then the oscillations would be out of phase at an
angle of 45 degrees with respect to the + polarization.
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The inspiral-merger-ringdown phases

I The process of a binary merger consists of three phases:

I Inspiral: rely on post-newtonian approach.
I Merger: numerical resolution of Einstein’s equations is needed.
I Ringdown: settled into a Kerr solution after any hair is emitted out. Detection of signatures

of new physics?.
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Quasi-normal modes - I

I Quasi-normal modes (QNMs) are complex numbers emerging out of (electromagnetic or
gravitational) perturbations over a compact body11. They are typically computed using a
WKB approximation associated to scalar perturbations.

I We perturb the black hole with some probe minimally coupled to a massive scalar field Φ:

1√
−g

∂α

(√
−ggαβ

∂β

)
Φ = µ2Φ (267)

I Next one performs a mode decomposition of the scalar field as

Φ(r , t,θ,φ) =
∫

dω

∞

∑
l=0

l

∑
m=−l

clm(ω)Φlmω(r , t,θ,φ);Φlmω = e−iωt ψlω(r)

r
Ylm(θ,φ) (268)

where ψlω(r) is the radial part and Ylm(θ,φ) are the usual spherical harmonics.
I This way, the scalar field equation is transformed in a Schrödinger-like equation

d2ψ

dr2
?

+ (ω−Vl (r?))ψlω(r?) = 0 (269)

where r? is the tortoise coordinate, defined by

dr/dr? =
√

AB (270)

and the effective potential is

Vl (r) = A(r)
(A′(r)

r
+

l(l + 1)

r2 + µ2
)

(271)

11K. D. Kokkotas and B. G. Schmidt, Living Rev. Rel. 2 (1999), 2.
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Quasi-normal modes - II

I Boundary conditions are imposed to account for asymptotic infinity, and the presence of a
horizon (in a BH space-time):

ψ(r)→
{

Be+iωr? if r → ∞(r?→+∞)
Ae−iωr? if r → rh(r?→−∞)

(272)

I These two boundary conditions result into a numerical shooting-problem that yields a
discrete spectrum of complex (due to the non-Hermitian - dissipative - boundary
conditions) numbers:

ω = ωR + iωI (273)

I The associated families of wavefunction solutions, ψln(r), described by an overtone
number n, with higher overtones decaying exponentially faster, are interpreted as
short-live resonances with ωR accounting for their frequency and ωI for their damping.

I Bonus track: Similarly one can study the absorption of black holes via a simple change in
the boundary conditions. Assuming solutions representing a scalar wave incoming from
the past null infinity these are

ψ(r)→
{

e−iωr? + eiωr?Rωl if r → ∞(r?→+∞)
Tωl e−iωr? if r → rh(r?→−∞)

(274)

where transmission and reflection coefficients are given by |Rωl |2 and |Tωl |2, respectively.
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Quasi-normal modes - III

I Exact solutions to the QNM problem are rare and one needs to resort to numerical
methods. However, analytical expressions can be found in the eikonal limit, l→ ∞.

I In such a case, the (massless) Klein-Gordon equation can be written under the form

d2

dr2
?

ψ + Q0ψ = 0 ; Q0 ≈ ω
2−A

l2

r2 (275)

I Standard WKB methods manage to solve this equation to provide the relation

Q0(r0)√
2Q

(2)
0

= i(n + 1/2) (276)

where Q(2)
0 ≡ d2Q0/dr2

? and the point r0 is such that dQ0/dr? = 0. For this value one
finds that 2A(r0) = r0A′(r0),⇒ it coincides with the value of the null circular orbit, r = rc .

I Using this result, WKB methods also allow to find the frequency

ωQNM = l

√
A(rc )

r2
c
− (n+1/2)√

2

√
− r2

c
A(rc )

(
d2

dr2
?

A
r2

)
(277)

which can actually be rewritten under the most simple form using null geodesic quantities

on circular curves (E/L)2 = A(rc)/r2
c as (Ωc = ϕ̇

ṫ
= A(rc )1/2

rc
is the coordinate angular

velocity)
ωQNM = Ωc l− i(n + 1/2)|γL| (278)

I Therefore, in the eikonal limit, the (real and the imaginary parts of the) of the QNMs (for
every SSS space-time) turn out to be multiples of those associated to the frequency and
instability time of null circular orbits!.
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Echoes in GWS from exotic compact objects- I

I The post-merger ringdown waveform of exotic ultracompact objects would be initially
identical to that of a black hole, but putative corrections at the horizon scale will appear as
periodic releases of secondary GW bursts after the main burst.

I Suppose an ultracompact object whose surface’s radius is arbitrarily close to its
Schwarzschild horizon, r0 = 2M + l , where l�M.

I Consider this time the scattering of a massless scalar wave �Φ = 0 (no assumption on
the time-dependence) with equation of motion (in the tortoise coordinate)[

− ∂2

∂t2 +
∂2

∂r2
?
−Vl (r)

]
Ψlm(r , t) = 0 (279)

where the potential Vl (r) meets its Schwarzschild values for r > r0, but is
model-dependent for r ≤ r0.

I This equation can be numerical solved with initial conditions
Ψlm(r ,0) = 0, ∂Ψm

∂t (0, r) = e(−r?−rg )2
/σ, where rg and σ are model-dependent.

I Near the would-be Schwarzschild horizon, the presence of a hard surface makes the
potential to develop a minimum and, therefore, an innermost stable photonsphere, which
can trap low-frequency modes.

I Such trapped modes can be leaked through the potential barrier under the form of
periodic echoes. The typical time scale for this to happen is roughly the time needed for
light to take a round trip between the two maxima of the potential barrier as

∆t ∼ 2
∫ 3M

rmin

√
ABdr (280)
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Echoes in GWS from exotic compact objects - II
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Figure: The effective potential (left) and the wave profile (right) for different exotic compact objects as compared to the black
hole ones. Extracted from Cardoso et al., arXiv:1608.08637 [gr-qc].

The replacement of the would-be horizon by additional peaks in the effective potential, induces
an effective partially-reflective surface allowing for a cascade of additional models of stable
period but decreasing amplitude. The echoes. Detectability?.
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The current EHT observations

I Supermassive black holes: located at the center of every large and middle-size galaxy
and probably also in small galaxies.

I Detected via black hole shadows, like in the galaxy M87/SgrA* via the Event Horizon
Telescope.

Figure: The image created by the acreting plasma in orbit around the supermassive central object of M87 galaxy
(left) and on SgrA* (right).

I Consistent with the Kerr solution, but open space for deviations from it.
I Mysteries: they exist even in very distance galaxies (∼ 1 Gyr). And where are the

intermediate black holes?.
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Shadows from accretion disks - I. Critical curve

I The motion of photons around any spherically symmetric compact body with line element
ds2 =−A(r)dt2 + B(r)dr2 + r2dΩ2 is governed by the equation(

dr
dλ

)2

=
1
b2 −V(r) (281)

where λ is the affine parameter, b ≡ L/E is the impact parameter defined as the ratio of
the photon’s angular momentum and its energy, and the effective potential is given by

V(r) =
A(r)

r2 (282)

I Zeroes on the right-hand side of (281) correspond to turning points, i.e., a photon
travelling from asymptotic infinity approaches to a minimum distance r0 of the black hole
before being scattered back to asymptotic infinity.

I The minimum value of the impact factor for which this may occur is given by

bc =
r2
ps

A(rps)
(283)

and the corresponding value of the radial function rps is known as the critical curve or the
photon sphere.

I Mathematically, the critical curve corresponds to the maximum of the potential.
I Physically, the critical curve corresponds to photons winding around the black hole an

infinite number of times. Yet, it is an unstable curve under any small perturbation.
I Exercise : prove that for a Schwarzschild black hole, bc = 3

√
3M and rm = 3M.
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Shadows from accretion disks - II. Ray-tracing

I In order to find all trajectories approaching the critical curve, it is more convenient to
rewrite the geodesic equation in terms of the variation of the azimuthal angle φ with
respect to the radial coordinate as

dφ

dr
=∓ b

r2
√

1− b2A(r)
r2

, (284)

I To find the optical appearance of a black hole one is not interested on all the light rays
emitted from the source and scattered in all directions, but just on those that have
managed to arrive to the observer’s screen.

I This is done by implementing a ray-tracing procedure: light rays arriving to the screen of
the observer at asymptotic infinity are traced back to the point of the sky they originated
from bearing in mind its deflection by the gravitational field of the black hole .

I Mathematically one integrates the geodesic equation (284) backwards.
I Physically, this corresponds to a black hole illuminated from behind by a planar source

which emits isotropically and with uniform brightness.
I In their path from the screen to its emission source a given light ray with impact parameter

b will turn a given angle around the black hole, even winding one or more times around
them depending on how close b is to bc .

I This can be captured by the (normalized) change in the azimuthal angle, that is,
n(b)≡ φ

2π
, which depends on how close the impact parameter is to the critical one. In this

setup, light rays in straight motion (i.e. not being deflected at all by the black hole) have
n = 1/2, and those with b = bc have n→ ∞.
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Ray-tracing for Schwarzschild black hole

I Integrate the geodesic equation for a bunch of light rays approaching the critical curve
from above and below. Implemented via a numerical integrator, for instance, within
Mathematica.

-10 -5 0 5 10
-10

-5

0

5

10

I In the ray-tracing for the Schwarzschild black hole, the observer is located on the far right
of the screen, the region inside the event horizon is represented by a black circle, and the
photon sphere radius by the filled black circumference. The different coloured bunch of
curves correspond to 1/2 < n < 3/4 (green and cyan), 3/4 < n < 5/4 (orange and
purple) and n > 5/4 (red and blue). Those in black correspond to n < 1/4 (for b < bc ).
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Shadows from accretion disks - III. The accretion disk

I While the background geometry determines the critical curve, the actual optical
appearance of a black hole is strongly dependent on the modelling of the accretion disk
providing its main source of illumination:

I Optical properties: whether the disk is transparent to its radiation (optically thin) or
not (optically thick).

I Geometrical properties: whether the disk is spherical, infinitely thin, or any shape
in between.

I Emission properties: governed by the radiative transfer (Boltzmann) equation
(neglecting scattering)12

d
dλ

(
dIν
dν3

)
=

(
jν
ν2

)
− (ναν)

(
Iν
ν3

)
, (285)

where Iν is the intensity for a given frequency ν, jν is the emissivity, αν the
absorptivity, and quantities inside parenthesis are frame-independent.

I Solving this problem thus requires precise information on those properties to be
implemented in Genera-Relativistic Magneto-HydroDynamical (GRMHD) simulations13.

12George B. Rybicki, Alan P. Lightman, “Radiative Processes in Astrophysics” (New York: Wiley-VCH, 2004).
13R. Gold, et al. Astrophys. J. 897 (2020) 148.
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Shadows from accretion disks - IV. Optically thin disk

I If the disk is optically thin, on each intersection with the equatorial plane every light ray will
pick up additional brightness in a way that largely depends on the particular assumed
emission modelling of the disk.

I In the Schwarzschild case, the bending angle can be computed analytically to go
logarithmically with n, entailing an exponential suppression of every subsequent loop
around the black hole. For the sake of the image, therefore, only three contributions are
relevant

I Direct emission: corresponding to light rays intersecting the equatorial plane (on its
front) just once, and defined by 1/2 < n ≤ 3/4 . This is the dominant contribution
to the optical appearance of the object, both in terms of luminosity and width of the
associated ring of radiation (more on this later). This corresponds to
b/M /∈ (5.02,6.17).

I Lensed emission: corresponding to light rays intersecting the equatorial plane
twice (on its front and its back, respectively), and defined by 3/4 < n ≤ 5/4 , being
the sub-dominant contribution to the luminosity. It corresponds to
b/M ∈ (5.02,5.19)∪b/M ∈ (5.23,6.17)

I Photon ring emission: corresponding to light rays intersecting the equatorial plane
at least thrice, and defined by n > 5/4. It covers the range b/M ∈ (5.19,5.23).
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Shadows from accretion disks - V. Spherical disk

I Consider a spherically symmetric disk. The central brightness depression (aka the
shadow) in the observed image coincides precisely with those light rays that terminate on
the event horizon. The boundary of the shadow is thus bounded by the critical curve.

I Approaching the shadow edge, given the logarithmic divergence of null geodesics paths’,
the image brightness also diverges logarithmically at the critical curve, resulting in a bright
“photon ring” encircling the black hole shadow.

I To get the specific intensity received on the observer’s screen one integrates the specific
intensity along a given photon’s path γi as

Iob(ν0) =
∫

γi

g3 j(νe)dlp (286)

where j(νe) is the emitted emissivity per-unit volume, g = ν0/νe is the redshift factor
accounting for the ratio between the observed and the emitted frequency, and dlp is the
infinitesimal proper length given by

dlp =

√
1

A(r)
+ r2

(
dϕ

dr

)
dr (287)

I Assuming a monochromatic emission with νf and radial profile 1/r2, i.e.,
j(νe) = δ(νe−νf )/r2, and using v0 = A1/2ve , the observed specific intensity reads

Iob(ν0) =
∫

γi

A3/2(r)

r2

√
1

A(r)
+ r2

(
dϕ

dr

)
dr (288)
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Shadows from accretion disks - VI. Infalling spherical accretion

I Consider an infalling spherical accretion where the radiating material is moving towards
the black hole along the radial direction. The redshift factor is now velocity-dependent as

gi =
Kρuρ

0

Kσuσ
e

(289)

where K µ = ẋµ is the photon’s 4-velocity and uµ
0 = (0,0,0,1) is the static obs’ 4-velocity.

I The infalling’s gas 4-velocity uµ
e components are

ut
e = A−1(r);ur

e =−
√

1−A(r)
A(r)B(r) ,u

θ
e = uφ

e = 0 (290)

I From the null condition KµK µ = 0 and the fact that Kt must be a constant, one gets

Kt = 1
b ; Kr

Kt
=±

√
B(r)

(
1

A(r) −
b2

r2

)
(291)

where +/− for a photon approaching/departing the black hole, so the redshift factor is

gi =
(

ut
e +
(

Kr
Ke

ur
e

))−1
(292)

I Since the proper distance is now dlp = Kµuµ
edλ = Kt

gi |Kr |dr , the observed intensity reads

Iob ∝

∫
γi

g3
i Kt

r2 |Kr |
dr (293)
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Some comments on the theoretical modelling

I The precise shape of the image is prone to many approximations and simplifications in
the theoretical modelling:

I Geometrical vs optically thick/thin?: EHT uses optically thin but geometrically thick.
Other models (e.g. Novikov-Thorne uses different hypothesis).

I Real BHs do rotate, but even at maximum allowed speed (which is physically
realistic at the moment of formation/merger, since BHs de-rotate themselves pretty
fast) deviations from the circularity in the space of the shadow is . 7%.

I Inclination of the image must be taken into account: M87 at ∼ 17 degrees and
SgrA∗ at ∼ 30 degrees???. Minor influence in the shape of the image unless one
goes to extreme inclinations ∼ 80 degrees.

I Truncated shapes of the emission profile of the disk are quite unnatural, since the
disk extends all the way down to the event horizon⇒ unfortunate, since this fact
most spoil the chances of observing the photon ring structure with the EHT
capabilities⇒ the ngEHT should be able to cope with this.

I Limited resolution of the images so far means that we only hope to see a blurred
image⇒ apply Gaussian filter 1/12 the field of view to simulate nominal
resolutions.

I If the object is not a BH, so that a horizon is not present (horizonless ultra-compact
objects)⇒ new signatures could be present, similarly as in the echoes of GW
emission. (Almost) perfectly reflective surfaces are claimed by EHT to be heavily
constrained14. Meanwhile, wormholes are (mostly) unaffected.

14The counterarguments of R. Carballo-Rubio, F. Di Filippo, S. Liberati and M. Visser, [arXiv:2205.13555 [astro-ph.HE] claim
that these arguments do not take into account the bouncing of radiation back to the object’s surface and subsequent absorption,
which largely softens such constraints even for very small absorption coefficients, κ∼ 10−5 .
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Constraints from SgrA* shadow’s size

I EHT Collaboration claims15 that under suitable circumstances (optically thin at observed
wavelength, geometrically thick, disk up to the event horizon, mass-distance relation well
known) and after proper calibration (the mass-to-distance ratio, while different sources of
error can be controlled to some extend), the measurement of the direct emission ring can
act as a reliable proxy for the size of the shadow itself.

rsh =
rm√
A(rm)

→ rsh = 3
√

3M ≈ 5.196M(for Schwarzschild) (294)

I Consequently, every modification from the Schwarzschild/Kerr paradigm with a different
shadow size is suitable to be constrained by this observation alone (and to be ruled out as
viable alternatives?). Mostly independent of the disk’s modelling!.

I Using two different surveys for the mass-to-distance ratio of Sgr A*, the EHT set bounds

on the fractional deviation δ≡ (dsh/dsh,sch)−1 between the inferred shadow radius and

that of a Schwarzschild black hole of angular size θsh = 3
√

3θ:
I Keck: δ =−0.04+0.09

−0.10 → 4.5M . rsh . 5.5M.
I VLTI: δ =−0.08+0.09

−0.09 → 4.3M . rsh . 5.3M
I Moreover, assuming both sets to be uncorrelated, one can average over both results to

get16

δ =−0.0060±0.0063→ 4.55M . rsh . 5.21M(1σ);4.22M . rsh . 5.54M(2σ) (295)

15K. Akiyama et. al. [Event Horizon Telescope], Astro. J. Lett. 930 (2022) L17.
16S. Vagnozzi, R. Roy, Y. D. Tsai and L. Visinelli, [arXiv:2205.07787 [gr-qc]].
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Constraining the size of Reissner-Nordström black holes

I For a Reissner-Nordström black hole a photon sphere is present whenever
0 < Q2 < (9/8)M2 (which includes in particular overcharged black holes, i.e., naked
singularities)

Figure: The shadow radius rsh of the Reissner-Nordström black hole as a function of the charge

I At 1σ the electric charge is constrained within the range 0≤ Q . 0.8, and at 2σ within the
range 0≤ Q . 0.9.
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Shadows from accretion disks - VII. Geometrically thin disk

I In a geometrically thin disk the emission can only be emitted from the equatorial plane so
that the specific intensity Iem

ν only depends on the radial coordinate.
I Analytical models can be implemented upon a two simplifications: i) neglecting absorption

αν = 0, ii) monochromatic emission, jν ∼ ν2, so that the transfer equation implies that
Iν/ν3 is conserved along a photon’s trajectory, iii) isotropic emission, i.e., Iem

ν = I(x).
I Gravitational redshift acts upon the frequency of the photon in the rest frame of the gas in

the disk, νe ,with associated intensity Iνe to, via Liouville’s theorem, yield a photon
frequency measured by the distant observer νo with intensity Iob

ν0
= (νe/ν0)3Iem

νe
, which

for a spherically symmetric geometry implies that Iob
ν0

= A3/2(x)Iνe . Integrating over the
full spectra of frequencies, Iob =

∫
dνe Iob

νe
, one finds the result17 Iob = A2(x)I(x).

I Additional intersections with the disk contribute to the total luminosity on the observer’s
screen, so that we can write (keeping only up to the third intersection by the arguments
above):

Iob = ∑
m

A2(x)I(r)
∣∣
x=xm(b) , (296)

where the so-called transfer function xm(b) encodes the location of the m-th intersection
of the light ray with impact parameter b with the disk.

I The net effect is the development of an infinite sequence of strongly-lensed self-similar
rings, exponentially decreased in brightness, and approaching a central brightness
depression whose size is not determined by the critical curve but by the location of the
inner edge of the disk.

I Note that the profile for I(r) is still a free-function!.
17S. E. Gralla, D. E. Holz and R. M. Wald, Phys. Rev. D 100 (2019) 024018.
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Light rings and shadow of the Schwarzschild black hole

I The optical appearance of the object is very different depending on the profile for I(r),
modelled in terms of the (truncated) location of the inner edge of the disk + decay with r .

I We run three simulations on face-on orientation with rie = risco = 6M (left), rie = rm = 3M
(middle) and rie = rh = 2M (right). Admittedly too strong an assumption from a physical
point of view, yet necessary for computations.

I The new light rings are barely appreciable because of their dimness and the fact that they
are typically superimposed with the direct emission.

I The size of the shadow is determined by the location of the inner edge of the disk. The
minimum size corresponds to every model in which rie = rh = 2M: the inner shadow18.

I The sharpness of the new light rings makes them to die-off slowly in the Fourier domain:
they will dominate the interferometric signal for very-high frequencies (baseline lengths of
∼ 1010−1011 wavelengths): ideal playground for very-long baseline interferometry19.

18A. Chael, M. D. Johnson and A. Lupsasca, Astrophys. J. 918 (2021) no.1, 6.
19M. D. Johnson, et al. Sci. Adv. 6 (2020) no.12, eaaz1310Diego Rubiera-Garcia Complutense University of Madrid, Spain drubiera@ucm.esElementary and advanced black hole physics: a modern practitioner’s guide.



Lyapunov exponents

I Lyapunov exponents are a measure of the rate at which nearby geodesics diverge (or
converge) in the phase space. Let us first rewrite the geodesic equation under the form( dr

du

)2
= V (r) (297)

where V (r) = E2−A(r)L2/r2. In this notation, circular unstable orbits, r = rps are
determined by V (rps) = V ′(rps) = 0.

I Linearizing around the photon sphere, r = rm + δr , one finds

dδr
du =

√
V (rm + δr)≈

√
1
2 V ′′(rm)δr = L

(3M)2 δr (298)

where we have first imposed the photon sphere condition and next used the
Schwarzschild values.

I In coordinate time, using the conserved variables, one can rewrite this expression as

dδr
dt ≈

√
A(rm)2V ′′(rm)

2E2 δr = δr
3
√

3M
(299)

which can be easily integrated to give20:

δr(r)≈ eγL t
δr0 ; γL =

√
V ′′(rm)

2ṫ2 = 1
3
√

3M
(300)

I This equation implies that slightly perturbed near-critical orbits diverge exponentially in
coordinate time, where positive values of the coefficient γL indicate a strong sensibility to
initial conditions (with an instability scale T ∼ 1/γL).

20A more rigorous derivation of this result can be found in arXiv:0812.1806 [hep-th].
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Multi-ring structure as observational discriminators - I

I If the potential qualitative departs from the Schwarzschild one in the inner region (while
keeping the asymptotic structure compatible with weak-field tests), new features arise.

I Not only the original light rings can be infused with additional luminosities, but new light
rings not foreseen in the Schwarzschild/Kerr solutions may arise.

I Toy-example: Black Bounce-Type II:

A(x) = B−1(x) = 1− 2Mx2

r3(x)
; r2(x) = x2 + a2 (301)

with a a new parameter. GR-frame or modified gravity?. Take an agnostic approach.
I For 4

√
3

9 < a
M < 2

√
5

5 it describes a family of traversable wormholes with two photon
spheres (on each side).

I In a model in which rie = risco , rie = rps , and rie = rth the optical appearance changes a
lot!.
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Multi-ring structure as observational discriminators - II

I Toy-example: Simpson-Visser “eye of the storm”

A(r) = 1− −2Me−l/r

r
(302)

I Solutions with −0.7358. l/M < 0.8 have two photon spheres, no event horizon, and no
curvature singularity either.

I The presence of additional light rings not foreseen in the Schwarzschild-Kerr solutions
seems to have a generic property of those models having a reflective surface at the
center (i.e. an effective potential taking finite values there).

I The presence of minima in the potential (anti-photon spheres) may however bring in
instabilities21, though the time-scale of them seem to be strongly model-dependent.

21V. Cardoso, L. C. B. Crispino, C. F. B. Macedo, H. Okawa, and P. Pani, Phys. Rev. D 90, 044069 (2014).
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The Novikov-Thorne accretion disk model

Figure: Under construction
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Null geodesics in a Kerr space-time

I The Kerr geometry admits a complete set of first integrals of motion 22: the energy E , the
angular momentum L, and the Carter constant K .

I Using the representation la = (ṫ, ṙ , θ̇, φ̇) for the null vector gab la lb = 0 tangent to the
geodesic, la∇a lb = 0, and the time-translation ξa

t = ∂a
t and axial ξa

θ
= ∂a

φ
Killing vectors in

this geometry, these quantities are (here Φ≡ 2Mr
Σ )

E ≡ gab laξ
b
t = (1−Φ)ṫ + aΦsin2

θφ̇ (303)

L ≡ −gab laξ
b
φ =−aΦsin2

θṫ + (r2 + a2 + Φsin2
θ)sin2

θφ̇ (304)

K ≡ 2Σla lb l̃añb = ∆

(
ṫ− Σṙ

∆
−asin2

θφ̇

)(
ṫ +

Σṙ
∆
−asin2

θφ̇

)
(305)

I Enforcing the null condition above, and rewriting the above system a la Chandrasekhar,
one finds the system

Σṫ =
1
∆

[
E
(
(r2 + a2)2−∆a2 sin2

θ
)
−2aMrL

]
(306)

Σ2 ṙ2 = R (r) (307)

Σ2
θ̇

2 = Θ(θ) (308)

Σφ̇ =
1
∆

[
2EaMr + (Σ−2Mr)

L

sin2 θ

]
(309)

with the definitions R (r) = (E(r2 + a2)−aL)2−K ∆, Θ(θ) = L− ( L
sin2 θ

−aE sinθ)2.
22Chandrasekhar S., 1983, The mathematical theory of black holes. Oxford University Press, 646 p., Oxford

Diego Rubiera-Garcia Complutense University of Madrid, Spain drubiera@ucm.esElementary and advanced black hole physics: a modern practitioner’s guide.



Photon shell of the Kerr black hole

I For a Kerr black hole, unstable bound null geodesics do not form a sphere, existing
instead at a photon shell determined by a radius (in the Boyer-Lindquist coordinates)
r−c ≤ rc ≤ r+

c given by

rc,± = 2M

[
1 + cos

(
2
3

arccos(±a/M)

)]
(310)

where +/− for retrogade/direct orbits.

I The bound orbits at b = bc,± are confined to the equatorial plane θ = π/2, while those in
the range r−c < rc < r+

c oscillate between the two polar angles θ± given by

θ± = arccos(∓√u+) (311)

u± =
r

a2(r −M)2

[
−r3 + 3M2r −2a2M±2

√
M∆(2r3−3Mr2 + a2M)

]
(312)

I In other words, the photon shell is made of

r−c ≤ rc ≤ r+
c , θ− ≤ θ≤ θ+, 0≤ φ < 2π, −∞ < t < +∞

and degenerates to the photon sphere of the Schwarzschild solution when a→ 0.
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Basis of magnetohydrodynamics simulations

I Since both M87 and SrgA* accretion rate is significantly below the Eddington’s limit, while
the plasma is typically hot, strongly magnetized and turbulent, the most “successful”
models are magnetically arrested ones incorporating plasma flow near the black hole via
general relativistic magnetohydrodynamics (GRMHD) simulations. The main bottleneck is
the suitable modelling of the relativistic radiative transport equations.

I The Boltzmann equation for unpolarized photons (scattering can be safely neglected) is

d
dλ

(
Iν
ν3

)
=

(
jv
ν3

)
− (ναν)

(
Iν
ν3

)
(313)

where parenthesis denote frame-invariant quantities, ν is the photon’s frequency, Iν the
intensity, jν the emissivity, and αν the absorptivity.

I Analytical models for the emissivity and absorptivity are typically set as23

jν = Cn

(
ν

νp

)α

;αν = ACn

(
ν

νp

)−(2.5+α)

(314)

where A,C,α some constants, νp = 230GHz is the pivotal frequency, while

n = n0 exp[− 1
2

[( r
10

)2
+ z2

]
(315)

is the particle number, with z = h cosθ and h the disk’s height.
I Standardized Imaging Tests are then run using different assumptions for these constants.

WARNING: Heavy numerical relativity methods are required.

23R. Gold, et al. Astrophys. J. 897 (2020) no.2, 148
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Primordial black holes

I The idea that gravitationally collapsed objects of very low mass (primordial black holes -
PBHs) could have been formed by large amplitude density perturbations in the very early
universe was proposed by S. Hawking more than 40 years ago24.

I Comparison of the cosmological distance at a time t after the Big Bang with the density
associated to a BH of mass M suggest such PBHs to have a mass of order

M ∼ c3t
G
∼ 1015

(
t

10−23s

)
g (316)

I This spans a huge range of masses: from 105 at a Planck’s time t ∼ 10−43s to 105M� at
t ∼ 1s, while the existence of quantum instabilities inherent to the existence of the event
horizon which render such PBHs quantum mechanically unstable, implies that only PBHs
with masses above 1015g could have survived until today.

I Mechanisms for formation: collapse from large inhomogeneities? result of phase
transitions? quantum effects during inflation?.

I Constraints on their evaporation come from different sources25: BB nucleosynthesis,
CMB, extragalactic gamma and cosmic rays, PBH explosions,. . .

24S. Hawking, Gravitationally collapsed objects of very low mass, Mon. Not. Roy. Astron. Soc. 152 (1971) 75.
25B. Carr, K. Kohri, Y. Sendouda and J. Yokoyama, Rept. Prog. Phys. 84 (2021) no.11, 116902.
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LESSON VIII. BLACK HOLES BEYOND GR

Recommended literature:

- J. Beltran Jimenez, L. Heisenberg, G. J. Olmo D. Rubiera-Garcia,
Phys. Rept. 727 (2018)1.

- A. De Felice, S. Tsujikawa, Living Rev. Rel. 13 (2010)3.
- S. Capozziello, M. De Laurentis, Phys. Rept. 509 (2011)167.

- T. Clifton, P. G. Ferreira, A. Padilla, C. Skordis, Phys. Rept. 513
(2012)1.

- S. Nojiri, S. D. Odintsov, V. K. Oikonomou, Phys. Rept. 692 (2017)1.
- L. Heisenberg, Phys. Rept. 796 (2019)1.
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Why going beyond GR?

I GR a successful theory: solar system experiments, GW + gamma rays bursts, ΛCDM,
recent galactic observations, compatibility with shadows . . . Why going beyond GR?.

I Phenomenological side: need of adding extra fields to match GR (ΛCDM) with
observational data:

I Dark matter - no evidence at particle accelerators/cosmic rays/so on.
I Dark energy - violation of energy conditions. Evidence?
I Inflation - degeneracy of models?,

I Theoretical side:

I Compatibility between GR and quantum mechanics. Quantum gravity at Planck’s
scale?.

I Unavoidability of spacetime singularities deep inside black holes and in the early
Universe. Related to quantum gravity?.

I Further compact objects may exist with similar/different GW signatures.

I Need to rethink fundamental principles, and understand their phenomenological
consequences.
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The era of strong-field tests of GR

I Modified gravity after GW150914 and GW170817+GW170817A: compatible with GR
expectations for coalescence of a black holes and neutron stars.

I LISA-VIRGO + satellite collaborations reported two main results of interest for modified
gravity:

I Gravitational waves propagate at the same speed as electromagnetic radiation.
Experimental constraint: one part in ∼ 10−16.

I Slaughter on modified theories of gravity26 (mainly those motivated by
cosmological considerations)

I Viable: GR, quintaessence/K-essence, Brans-Dicke/f (R), Kinetic Gravity
Braiding, Derivative Conformal, Disformal Tuning, some DHOST, ....

I Non-viable: quartic/quintic Galileons, Fab Four, de Sitter Hordenski,
Gauss-Bonnet, quartic/quintic GLPV, some DHOST, ...

I Purely tensor polarizations strongly favoured over purely scalar/vector
polarizations.

I Tests on the Kerr (and Kerr-like) solution from black hole shadows (+ Iron - Kα line, etc).
I Tests of GR from compact and sub-stellar objects: neutron stars, white, red and brown

dwarfs, and main-sequence stars. Limiting mass and stellar evolution.
I All sum up: the birth of multimessenger astronomy: astronomy with different carriers

(light, neutrinos, and GWs).

26 . M. Ezquiaga and M. Zumalacárregui, Phys. Rev. Lett. 119 (2017) no.25, 251304.
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Parametrizing deviations from the Kerr black hole - I

I To test deviations from the Kerr hypothesis at the horizon scale, it is useful to develop
model-independent frameworks parametrizing generic axisymmetric black hole
geometries through a finite number of adjustable quantities, which can be later
constrained with observational data.

I In a suitable coordinate system a generalization of the Kerr metric can be written as

ds2 =−−N2−W 2 sin2 θ

K 2 dt2−2Wr sin2
θdtdθ + K 2r2 sin2

θdφ
2 + Σ

(
B2

N2 dr2 + r2dθ
2
)

(317)
where the functions N(r ,θ), W(r ,θ), K (r ,θ), Σ(r ,θ) and B(r ,θ) must be chosen in such
a way that these coefficients can be constrained from the PPN limit27, e.g., in the
spherically symmetric limit

gtt ≈ 1− 2M
r

+ 2(β− γ)
M2

r2 ;grr ≈ 1 +
2γM

r
(318)

I In GR: β = γ = 1, while Lunar Laser Ranging experiment set the bound
|β−1| ≤ 2.3×10−4.

I Near the event horizon, the metric functions are parametrized in series of the variable
x = 1−2M/r , and observational data - e.g. size of the shadow - would put constraints
upon the different terms in the expansion.

27D. Psaltis et al. [Event Horizon Telescope], Phys. Rev. Lett. 125 (2020) no.14, 141104.
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Parametrizing deviations from the Kerr black hole - II

I Examples of parametrizations (in units of M)
I Johannsen-Psaltis28:

gJP
tt =−

(
1− 2

r

)(
1 +

∞

∑
i=2

αi

ri

)
(319)

I Rezzola-Zidenko29:

gRZ
tt =−x[1− ε(1− x) + (a0− ε)(1− x2) + Ã(x)(1− x)3] (320)

where
Ã(x) =

a1

1 + a2x
1+

a3z
...

(321)

I These metric coefficients can be constrained by several means, the simplest of them once
again the size of the shadow.

I EHT observations of Sgr A* report that

−1.1. α2 . 0.5,−3.1. α3 . 1.5,−7.8. α4 . 4.6 for JP metric (322)

−0.2. a0 . 0.7,−0.3. a1 . 1.0 for RZ metric (323)

I It can be combined with other tests: S2 orbit, pulsar timing, universality of free-fall,
GWs,. . .

28T. Johannsen, Phys. Rev. D 87 (2013) no.12, 124017.
29R. Konoplya, L. Rezzolla and A. Zhidenko, Phys. Rev. D 93 (2016) no.6, 064015.
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Black holes in f (R) gravity

I f (R) is perhaps the simplest extension of GR. It just requires to promote R to a more
general function.

I Field equations

fRRµν−
1
2

f (R)gµν− [∇µ∇ν−gµν�]f (R) = κ
2Tµν (324)

I Tracing over gµν one finds
RfR −2f + 3�f (R) = κ

2T (325)

This implies that f (R) can be interpreted as a dynamical scalar dof (aka scalar field
φ≡ fR ).

I The fourth-order equation nature of the eom + new propagating dof greatly complicates
the obtention + interpretation of solutions.

I Solutions can be obtained within the constant-field approximation: fR(R0)−2f (R0) = 0.
Physical viability and interpretation?.

I Solutions with non-constant curvature are also known, in both analytical and numerical
form. Too much literature to summarized on these slides.

I A problem related to the definition of the mass, since the contribution from the scalar field
is never zero. Are vacuum solutions those of GR?. Does Birkhoff’s theorem hold?.
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Black holes in Gauss-Bonnet gravity

I A theory with second-order field equations that admit exact black hole solutions based on
the Gauss-Bonnet invariant.

I In four space-time dimensions Gauss-Bonnet is a topological invariant and yields no
modified dynamics. Promote the theory to D dimensions. Action:

SGB =
1

2κ2

∫
dDx
√
−g[(R−2Λ) + αGB(R2−4RµνRµν + Rα

βµνRα
βµν)] (326)

I Field equations

Gµν + Λgµν + αGBGGB
µν = κ

2Tµν (327)

Gµν = 2[RRµν−2RµαRα
ν−2RαβRµανβ + Rµ

αβγRναβγ]− 1
2

gµνLGB (328)

I Surprisingly, this theory admits (non-linear) electrostatic, spherically symmetric solutions
under closed form (though via a somewhat lengthly calculation!)

g−α (r) = 1 +
r2

l2α

(
1−

√
1 +

2l2α
rD−1

(
m− 2κ2

D−2
ωD−2

∫
∞

r
RD−2T 0

0 (R,q)dR− rD−1

l2Λ

))
,

(329)
where we have defined l2α = 2α̃.

I Main features: several branches of solutions, not all defined everywhere. Up to two
horizons. Singularities everywhere. Physical impact?.
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Modified gravity with scalar fields: the Horndeski family

I The most general gravitational action with a single scalar field having second-order
equations of motion is called the Horndeski family, which is given by30

S =
5

∑
i=2

∫
d4x
√
−gLi (X ,φ) (330)

where the Li terms represent the following contributions

L2 = G2(φ,X) (331)

L3 = G3(φ,X)�φ (332)

L4 = G4(φ,X)R−2G4,X (φ,X)[(�φ)2−φ
2
µν] (333)

L5 = G5(φ,X)Gµνφ
µν +

G5,X

3
[(�φ)3 + 2φ

3
µν−3φ

2
µν�φ] (334)

where the functions Gi (X ,φ), which depend on both the scalar field φ and its kinetic term
X = ∇µφ∇µφ, characterize the particular member in the family (note that GR corresponds
to {G4 = 0,G2 = G3 = G5}), and the notations φµ...ν ≡ ∇µ . . .∇νφ, and �φ≡ gµνφµν.

I This family can be further extended to a more general class of healthy theories having
higher-order equations but such that the application of a number of hidden constraints
prevent the propagation of the Ostrogradsky ghosts. It includes as members the beyond
Horndeski class 31 and the even more general class called degenerate higher-order
scalar-tensor (DHOST) theories.

30D. Langlois and K. Noui, JCAP 02 (2016), 034.
31M. Zumalacárregui and J. Garcı́a-Bellido, Phys. Rev. D 89 (2014), 064046
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Playing with the Horndeski family

I For instance, the beyond Horndeski model adds two extra terms

LbH
4 = F4(X)ε

µνρσ
ε

αβγ

σ φµφαφνβφργ (335)

LbH
5 = F5(X)ε

µνρσ
ε

αβγδ
φµφαφνβφργφσδ (336)

I Chamaleon/Vainshtein mechanisms must be called upon in order to “screen” the
additional scalar fields far from the matter sources, so as not to get into conflict with weak
field/solar system experiments32.

I Analytical solutions can be found in specific branches of the theory33. An example is the
“Quartic Horndeski” square-root model with

G2 = ηX ;G4 =
M2

P
16π

+ β
√
−X ;G3 = G5 = F4 = F5 (337)

with η,β free dimensionless parameters, and another is the Quartic beyond-Horndeski
model with

G2 = ηX ;G4 =
M2

P
16π

;F4 = γ(−X)−3/2;G3 = G5 = F5 = 0 (338)

I Go on with your favourite choice of free functions to produce as many papers on new
solutions as desired.

32K. Koyama, G. Niz and G. Tasinato, Phys. Rev. D 88 (2013), 021502.
33E. Babichev, C. Charmousis and A. Lehébel, JCAP 04 (2017), 027.
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Modified gravity with vector fields: the Proca family

I Why stopping with addition of scalar fields? vectors fields are also at our disposal.
I The most general derivative self-interactions for a massive vector field with second order

equations of motion and three propagating degrees of freedom on flat space-time (up to
disformal transformations) corresponds to the generalized Proca theory, which is given by
the Lagrangian density34

Lgp =−1
4

FµνF µν +
5

∑
n=2

αnLn (339)

where the self-interaction terms to the electromagnetic kinetic term are given by

L2 = f2(X ,F ,Y ) (340)

L3 = f3(X)∂µAµ (341)

L4 = f4(X)[(∂ ·A)2−∂ρAσ∂
σAρ] (342)

L5 = f5(X)[(∂ ·A)3−3(∂ ·A)∂ρAσ∂
σAρ + 2∂ρAσ∂

γAρ
∂

σAγ]

+ f̃5(X)F̃ αµF̃ β
µ ∂αAβ (343)

L6 = f6(X)F̃ αβF̃ µν
∂αAµ∂βAν (344)

where X =−AµAµ/2 and Y = AµAνFµ
αFνα and overtildes denote duals.

I Further generalizations of this action are possible, even mixing vector with scalar and
tensor fields, and even considering non-abelian and multi-field models.

I Finding exact/numerical black hole solutions for specific choices is quickly degenerating.
34L. Heisenberg, Phys. Rept. 796 (2019) 1-113.
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Further alternatives

I While these are (arguably) the most popular current extensions, other proposals are
available:

I Break/add physical core principles imbued in GR: Lorenz-breaking theories, doubly
special-relativity...

I Break/change the way matter and gravity couple: non-minimal gravity-matter
couplings, action-dependent theories...

I Do not stop at adding/re-defining spin-0 and spin-1 additional fields but consider
also spin-2: massive gravity, mimetic gravity...

I Increment number of space-time dimensions: brane-world models.
I Mix theories between themselves: Einstein-Maxwell-Dilation-GB-Proca-Whatever.
I And of course fundamental approaches to quantization of gravity are still lurking,

even if their role is nowadays quite diminished: string theory, loop quantum
gravity...

I Not tired yet?. Propose your favourite model of gravity!.
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Main difficulties faced

I Every such alternative proposal to GR faces a number of common troubles for the sake of
black hole physics.

I Theoretical front:
I Field equations tend to be significantly harder to solve than their GR counterparts.

Analytical solutions may even be impossible except under excessively constrained
conditions.

I Shortcut, GR-based, methods to solve equations do not necessarily work beyond
of it (e.g. Janis-Newman trick).

I The body of knowledge developed within GR (cosmic censorship, gravitational
collapse, thermodynamic laws, etc) does not necessarily hold beyond of it.

I Numerical front:
I Most available numerical recipes are tightly attached to the structure of GR

Einstein’s field equations, thus rendering the task of adapting them to every
modification of GR very costly from a resources and human power point of view.

I Indeed, getting to a well-posed set of equations for numerical equations to be run
is not guaranteed a priori.

I Observational front:
I Theories with extra fields, or changing the way (different sectors of the) matter

propagates get very easily in trouble with weak-field limit observations.
I Conversely, those modifying GR-dynamics only in high curvature/density regimes,

may be impossible to be distinguished at horizon/photon sphere-scale
observations.
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Stellar and sub-stellar objects

I Besides black holes and exotic horizonless objects, of course both stellar and sub-stellar
objects are at our disposal to test modified gravity effects.

I Relativistic: neutron stars and (to some extend) white dwarfs:
I Non-relativistic stars: red and brown dwarfs, main-sequence stars and (to some extend)

white dwarfs.

I A great playground for modified theories of gravity!.
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LESSON IX. BLACK HOLES IN THE METRIC-AFFINE APPROACH
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A quick digression: the three formulations of GR

I In general, an affine connection can be split into three independent pieces:

Γλ
µν =

{
λ

µν

}
+ K λ

µν + Lλ
µν (345)

I Levi-Civita connection of the metric gµν (associated to curvature) :
{

λ
µν

}
.

I Contortion (associated to torsion T λ
µν ≡ 2Γλ

[µν])

K λ
µν ≡

1
2

T λ
µν + T(µ

λ
ν) (346)

I Disformation (associated to nonmetricity Qρµν ≡ ∇ρgµν)

Lλ
µν ≡

1
2

gλβ
(
−Qµβν−Qνβµ + Qβµν

)
(347)

I Three equivalent (modulo boundary terms technicalities) formulations of GR 35

I Riemannian-based GR: R 6= 0,T = 0,Q = 0.
I Teleparallel equivalent of GR: R = 0,T 6= 0,Q = 0.
I Symmetric (or coincident) teleparallel GR: R = 0,T = 0,Q 6= 0.

35See Jimenez et al. arXiv:1710.03116 [gr-qc].
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A simple extension of GR: Einstein-Cartan

I Perhaps the simplest geometry of this kind is that of adding torsion (and it is dubbed as
Einstein-Cartan), since it can be embedded within GR itself, with formally the same action.

I Torsion must be considered whenever one considers the presence of fermions in the
theory (since they see the connection).

I Defining torsion as T α
µν ≡ Γλ

[µν], the affine (Cartan) connection is split into two pieces

Γλ
µν = Γ̃λ

µν + K λ
µν made up of the Riemannian (torsionless) connection and the contortion

tensor Kαµν = Tαµν + 2T(µν)α.
I The matter Lagrangian contains now a contribution in the torsion piece, Lm(gµν,Γ

λ
µν,ψm)

in such a way that the gravitational field equations are also GR-like, G̃µν = T eff
µν where the

effective energy-momentum tensor T eff
µν = Tµν + Uµν contains now a torsion-induced

piece which can be computed on a case-by-case basis.
I Torsion is NOT a dynamical field and DOES NOT propagate in vacuum, but instead

satisfies the so-called Cartan’s equations

T α
βγ + δ

α

β
Tγ−δ

α
γ = κ

2sα
βγ (348)

where Tβ ≡ T γ
βγ is the torsion vector and sαµν ≡ Lm

δKαµν
is the spin tensor with dimensions

of energy/area.
I Therefore, torsion effects should appear at very high-energy (spin) densities, which

manifest via new matter-type terms to the Einstein-like equations, but also on the
dynamics of fermions/bosons coupled to gravity.

I Black hole solutions can be “easily” found by setting a set of matter fields, and computing
the Uµν tensor to get to the new Einstein equations.
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Crystalline structures with defects - I

I A microstructure with a macroscopic continuum limit is found in condensed matter
systems such as Bravais crystals or graphene.

I Crystalline structures may have defects of different kinds

I In real crystals, the density of defects is generally non-zero.

I Defects have dynamics: upon the action of forces or heat, defects can move and interact
with the same or other kinds of defects.
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Crystalline structures with defects -II

I The continuum limit of these structures is naturally described in terms of a metric-affine
space

I At each point we find 2 or 3 lattice vectors defining the microstructure.
I Moving along those vectors we jump from atom to atom.
I Distances can be measured by step counting along crystallographic directions to

provide an intuitive idea of metric:

ds2 = gij dx i dx j

with gij = δij and Γa
bc = 0 in suitable coordinates.

I An affine connection Γλ
µν is used to transport vectors and define geodesics.

Diego Rubiera-Garcia Complutense University of Madrid, Spain drubiera@ucm.esElementary and advanced black hole physics: a modern practitioner’s guide.



Crystalline structures with defects - III

I The step-counting procedure breaks down when considering point defects.

I The continuum limit must be done with care:

I Determine the density of defects, whose average separation scale can be much
larger than the interatomic separation.

I Knowledge of that density allows to determine the deformations of lengths, areas,
and volumes w.r.t. an idealized reference structure without defects:
gPhys

µν = Dα
µ qAux

αν , where Dα
µ depends on the density of defects.

I The idealized geometry has a well defined parallel transport, ∇Γ
αqµν = 0, but there is

non-metricity on the physical geometry Qαµν ≡ ∇Γ
αqµν 6= 0,

I Cartan torsion, Sα

βγ
= Γα

βγ
−Γα

γβ
is the continuum version of crystal dislocation.

I Independent gµν and Γλ
µν are necessary to account for microscopic defects.
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Non-Riemannian geometries

I The usual Riemannian description of GR is not the single consistent geometry to describe
gravitational phenomena

I Riemannian geometry is not enough to deal with continuous systems with defects on their
microstructure.

I Could this lack of versatility of Riemannian geometry be the reason for the existence of
space-time singularities?.

I What happens if gravitation is formulated in non-Riemannian spaces?. Why rule out this
possibility a priori?.

I Whether the space-time geometry is Riemannian or otherwise is to be determined upon
experimentation, not by tradition/convention.
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Ricci-based gravities in metric-affine approach

I A large family of theories built out as scalars based on the Ricci tensor: Mµ
ν = gµαRαν

are called Ricci-based theories of gravity, and can be systematically analyzed.
I Consider the action

S =
1

2κ2

∫
d4x
√
−gLG[gµν,Rµν(Γ)] + SM [gµν,ψm] (349)

Examples: GR, f (R), f (R,RµνRµν), Born-Infeld inspired theories of gravity...
I Caveat 1: Torsion is not included here, as for minimally coupled bosonic fields it can be

removed out of a gauge choice.
I Caveat 2: The antisymmetric part of the Ricci tensor is removed to avoid ghost-like

instabilities Beltrán, Delhom, arXiv:1901.08988 [gr-qc] .
I If connection is metric-compatible, ∇Γ

µ (
√
−ggαβ) = 0 (Metric approach) then EOM:

δgµν⇒
(

δLG

δgµν
− LG

2
gµν

)
+ ∇λ

[
gγν

δLG

δΓ
µ
λγ

−gβµgγνgαλ δLG

δΓα

βγ

]
= κ

2Tµν (350)

I Difficulties: higher-order EOM?, ghosts?, cg 6= c?, compatibility with solar system
experiments? viable as effective models of quantized GR?...

I If gµν and Γα

βγ
are independent (Palatini/metric-affine approach) then EOM:

δS =
∫

d4x
[√
−g
(

δLG

δgµν
− L

2
gµν

)
δgµν +

√
−g

δLG

δΓα

βγ

δΓα

βγ

]
+ δSM (351)

δgµν ⇒ δLG

δgµν
− LG

2
gµν = κ

2Tµν (352)

δΓα

βγ
⇒ δLG

δΓα

βγ

= 0 (353)Diego Rubiera-Garcia Complutense University of Madrid, Spain drubiera@ucm.esElementary and advanced black hole physics: a modern practitioner’s guide.



Einstein-frame representation of RBGs field equations

I RBG theories always admit an Einstein-frame representation

Gµ
ν(q) =

κ2

|Ω̂|1/2

[
T µ

ν−δ
µ

ν

(
LG + T

2

)]
(354)

I Definitions:

I ∇Γ
µ (
√
−qqαβ) = 0 (i.e., Γ is Levi-Civita of q).

I Gµ
ν(q)≡ qµαRαν(q)− 1

2 δµ
νR(q) is the Einstein tensor of qµν

I q and g are related via a deformation matrix as

qµν = gµαΩα
ν (355)

I For every LG , the deformation matrix Ωα
ν can always be written on-shell as a

function of the energy-momentum tensor of the matter fields.
I In GR, LG = R, then Gµν(q) = κ2Tµν and qµν = gµν.

I Nice features of RBGs:
I Second-order field equations.
I Vacuum solutions are those of GR.
I No ghost-like instabilities.
I cg = c and two tensorial polarizations.
I Compatibility with solar system experiments and with GW observations so far.
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Spherically symmetric space-times

I In general, solving the RBG field equations requires removing all dependences on gµν in
terms of qµν on their right-hand side using the fundamental relation qµν = gµαΩα

ν. Only
possible for scenarios with a large amount of symmetry.

I For matter-energy sources whose energy-momentum tensor is of the form as
T µ

ν = diag(−ρ,−ρ,K (ρ),K (ρ), where K (ρ) is a certain function characterizing the
matter fields, the RBG line element can be cast as

ds2 =− A(x)

Ω1(x)
dt2 +

dx2

A(x)Ω2(x)
+ r2(x)dΩ2

where the functions Ω1,2 characterize the particular combination of RBG + matter field
description, and typically contain the mass and charge of the solution as well as additional
parameters coming from the RBG Lagrangian density. As for the radial function it satisfies

r2(x) =
x2

Ω2(x)

where the relation between r2 > 0 (which measures the area of the two-spheres) and the
coordinate x ∈ (−∞,+∞) does not need to be monotonic.
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An example: electrostatic solution of Born-Infeld gravity - I

I Consider Born-Infeld gravity coupled to an electrostatic (Maxwell) field

SEiBI =
1

κ2ε

∫
d4x

[√
−λ|gµν + εRµν|−

√
−g

]
+

1
8π

∫
d4x
√
−gX

where ε is new parameter with dimensions of length squared. At curvature scales
|Rµν| � 1/ε, one has SEiBI ≈ (R−2Λ)/(2κ2) + ε(R2−RµνRµν/2) + O(ε2) with
Λ = (λ−1)/ε.

I Electrostatic spherically symmetric solutions of this theory can be written in ingoing
Eddington-Finkelstein coordinates as

ds2 =−A(x)dv2 +
2

σ+
dvdx + r2(x)dΩ2 , (356)

where

A(x) =
1

σ+

[
1− rS

r
(1 + δ1G(r))

σ
1/2
−

]
(357)

δ1 =
1

2rS

√
r3
q /lε;σ± = 1± r4

c /r4(x); r2(x) =
x2 +

√
x4 + 4r4

c

2
, (358)

with rc =
√

lεrq , lε =−2ε, r2
q = 2GN q2, M0 = rS/2, while the function G(z), with

z = r/rc , can be written as an infinite power series expansion of the form

G(z) =− 1
δc

+
1
2

√
z4−1

[
f3/4(z) + f7/4(z)

]
, (359)

where fλ(z) = 2F1[ 1
2 ,λ,

3
2 ,1− z4] is a hypergeometric function, and δc ≈ 0.572069.Diego Rubiera-Garcia Complutense University of Madrid, Spain drubiera@ucm.esElementary and advanced black hole physics: a modern practitioner’s guide.



Electrostatic solution of Born-Infeld gravity - II

I For z� 1, G(z)≈−1/z yields the RN solution of GR:

A(x)≈ 1− rS

r
+

r2
q

2r2 . (360)

I Behaviour of radial function r2(x) inform us about the existence of a wormhole structure.

z=z@xD

dG

dx

dz

dx+ÈxÈ-ÈxÈ

-4 -2 2 4
x

-1

1

2

3

4

5

I No violation of energy conditions needed!
I Modified structure of horizons

I If δ1 > δc : RN-like solutions (two, one -extreme-, or none horizons).
I If δ1 < δc : Schwarzschild-like solutions (a single horizon).
I If δ1 = δc : A single horizon or none (below a number of charges Nq < Nc ' 16.55).

I Location is almost coincident with GR predictions save by small rs, rq (microscopic BHs).
I Curvature scalars blow up at the wormhole throat x = 0, but not for δ1 = δc .

Interpretation?.
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Geodesics in metric-affine gravity

I A geodesic curve γµ = xµ(λ) with tangent vector uµ = dxµ

dλ
and affine parameter λ

satisfies (e.g. Chandrasekhar’s book):

d2xµ

dλ2 + Γ
µ
αβ

dxα

dλ

dxβ

dλ
= 0 (361)

I Comments:

I The metric defines a natural connection (Christoffel) and defines a set of
geodesics.

I The independent connection can be used to define a different set of geodesics.
I Assuming the EEP, matter is not coupled directly to the independent connection, so

geodesics are those associated to the metric (but GWs couple to qµν!36).

36J. Beltran Jimenez, L. Heisenberg, G. J. Olmo and D. Rubiera-Garcia, JCAP 10 (2017), 029.
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Mechanisms for restoration of geodesic completeness - I

I For any static, spherically symmetric space-time
ds2 = C(x)dt2−B(x)−1dx2 + r2(x)dΩ2, the geodesic equation can be written as

C
B

(
dx
dλ

)2

= E2−C

(
L2

r2(x)
− k

)
where λ is the affine parameter (the proper time for a time-like observer), E ,L are the
energy and angular momentum per unit mass, and k = 0,−1 for null and time-like
observers.

I For the line element above this equation turns into

1

Ω2
1

(
dx
dλ

)2

= E2− A(x)

Ω1

(
L2

r2(x)
− k

)
(note that this equation can be rewritten as the one of a particle moving in a

one-dimensional effective potential Veff = A(x)
Ω1

(
L2

r2(x)
− k
)

).

I Null radial geodesics are particularly informative, since they ignore the effective potential:

λ−λ0 =±
∫

1
EΩ1(x)

dx

and everything revolves around the behaviour of Ω1(x) and r2(x).
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Mechanisms for restoration of geodesic completeness - II

I Two mechanisms to restore geodesic completeness

1. The central region is pushed to the future (or past) boundary of the space-time in
such a way that every (null and time-like) geodesic takes an infinite time to reach to
it.

2. Some bounce arises in r2(x) near that region where the point-like singularity
should be, x = xc , allowing geodesics to defocus and continue their path to
another region of space-time,.

I In the first case, no information can get to (or come out of) the bouncing region z = zc .
I In the second case, both photons and extended observers can get to x = 0 in finite affine

time. Effects of curvature?. In general it is divergent at the bounce!.
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The effect of curvature upon a congruence

I Physical (extended observers) can be modelled by a congruence: each particle of the
body is assumed to free-fall upon its geodesic, but tidal forces among each other disrupt
their individual trajectories.

I Technically, a basis of (any) three Jacobi-vectors Z a (a = 1,2,3) defines a volume as
(Tipler, Krolak, Nolan):

V(λ) = det[Z a
(1),Z

b
(2),Z

c
(3)]

If limλ→0 V(λ) = 0, a crushing-type singularity occurs.

I In the Schwarzschild case, there is an infinite stretching in the radial direction and an
infinite contraction in the angular ones: spaghettization occurs with entails a loss of
causal contact among the different parts of the body.

I In our modified black holes, V(λ)→ ∞, which has not a proper interpretation!.

I Alternative approach: play with causality to send light rays from any two parts of the body
on a round trip37. Time of flight?.

I In this approach, and using comoving coordinates, we verified that each part of the
congruence are in causal contact with any other part even as the problematic
(divergent-curvature) region is crossed. This means that the physical interactions
sustaining the body may be effectively transmitted.

37G. J. Olmo, DRG, A. Sanchez-Puente, Class. Quant. Grav. 33, 115007 (2016).
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Projective invariance

I Rooted on the equivalence principle, test particle paths in GR are determined by the
geodesic equation, which in an arbitrary parametrization λ reads

d2xµ

dλ2 + Γ
µ
αβ

dxα

dλ

xβ

dλ
= f (λ)

dxµ

dλ
(362)

I An affine parametrization u is that in which f (λ) = uλλ/uλ with uλ = du/dλ, which makes
the fictitious force appearing in the right-hand side to go away.

I The geodesic equation (particles’ paths), on each parametrization, is invariant under the
set of projective transformations

Γ̃
µ
αβ

= Γ
µ
αβ

+ ξαδ
µ
β

(363)

where the 1-form field ξ≡ ξαdxα satisfies ξα
dxα

dλ
=−f (λ).

I However, neither the Riemann tensor nor the Ricci one are invariant, transforming as

Rα
βµν(Γ̃) = Rα

βµν(Γ) + δ
α
µ Fβν;Rµν(Γ̃) = Rµν(Γ) + Fµν (364)

where the antisymmetric tensor Fµν = ∂µξν−∂νξµ.
I In the Einstein-Hilbert action of GR, the fact that only the symmetric part of the Ricci

tensor enters into it makes it to be projectively-invariant as well.
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Projective invariance and curvature scalars

I Having non-projectively invariant terms in the action is an invitation for the presence of
ghost-like instabilities in the theory, unless suitable torsion is called upon to eat such
ghosts up38.

I The Kretschmann scalar is NOT projectively invariant:

K (Γ̃) = K (Γ) + 4FµνF µν (365)

I This equation implies that, if the Kretschmann scalar diverges for a connection Γ, it is
always possible to find a new gauge ξµ in which it is finite. Does this mean that the
curvature divergence of the Schwarzschild black hole can be gauged away?.

I There is yet another curvature invariant

P ≡ Rαβ

µν Rµν

αβ
=

48M2

r6 (366)

which is projectively-invariant, so Schwarzschild curvature divergence cannot be gauged
away by the projective invariance trick.

I It is however yet another warning in identifying space-time singularities with ill-behaviours
of some selected set of curvature scalars.

38J. Beltrán Jiménez and A. Delhom, Eur. Phys. J. C 79 (2019) no.8, 656.
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Scattering of waves off the wormhole

I Since real particles are not idealized geodesics but have some finite extension, another
test is to discuss the problem of scattering of waves off the problematic region.

I Take a free real scalar field �φ = 0 and φω,lm = e−iωt Ylm(θ,ϕ)fω,l (x)/r(x), and study its
behaviour around the curvature-divergent region 39.

fy ′y ′ + (α
2± 1√

|y ′|
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I Transmission and emission coefficients can be computed in all cases. No evidence of
pathologies!.

39G. J. Olmo, DRG, A. Sanchez-Puente, Eur. Phys. J. C 76, 143 (2016).
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Paths of accelerated observers

I By the principle of general covariance, observers with arbitrary motions should also have
complete paths. No discrimination is allowed between different observers - they all have
the same right to live.

I Motion for accelerated observers with linear acceleration k(λ) is described by 40

(
dx
dλ

)2

+ C(x)

(
1 +

L2

r2(x)

)
=

E +
∫ x

x0

k(λ)dx ′√
1 + L2

r2(x ′)

2

I For quadratic gravity, LG = R + a(R2 + bRµνRµν), the trajectory of an accelerated
particle of charge q and mass m satisfies

1

σ2
+

(
dx
dλ

)2

+ C(x)

(
1 +

L2

r2(x)

)
=
(

E + Iquadratic
L (r)

)2

where Iquadratic
L (r) =−Qq

m

EllipticF

[
sin−1

(√
L2+r2

c
L2+r2

)
,

L2−r2
c

L2+r2
c

]
√

r2
c +L2

.

I Accelerated paths (finite local acceleration) can be indefinitely extended in all cases!.

40G. J. Olmo, DRG, A. Sanchez-Puente, Class. Quant. Grav. 35, 055010 (2018).
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(No) correlations between pathology markers

I Take a simple RBG model: f (R) = R−σR2 with perfect fluid
T µ

ν = diag(−ρ,−ρ,ρ + βρ2,ρ + βρ2) (fulfilment of energy conditions, reduction to RN
limit, equivalence to NEDs).

I Exact analytical solutions can be obtained for each combination of the signs of (σ,β):
four cases41

I No correlation between geodesic (in) completeness and (divergence of) curvature
scalars!.

41C. Bejarano, G. J. Olmo, DRG, Phys. Rev. D 95 (2017) 6, 064043.

Diego Rubiera-Garcia Complutense University of Madrid, Spain drubiera@ucm.esElementary and advanced black hole physics: a modern practitioner’s guide.



Some thoughts

I Space-times singularities continue to defy our understanding and physical intuition of
gravitational phenomena under the most extreme conditions.

I The singularity theorems have aged well, virtually being untouched since their formulation
fifty years ago.

I (At least) four different criteria can be used to look for pathologies:

I Geodesic completeness restoration can be achieved either via a bounce or by
pushing the conflictive region to infinite affine distance.

I Curvature divergences and intuitively infinite tidal forces do not necessarily disrupt
physical observers in an utterly destructive way.

I Upgrading idealized trajectories of point-like particles to (toy-model) capture its
fundamental extended (quantum) behaviour poses no problem.

I Accelerated observers have the same right to live as geodesic ones, and they
actually do.

I No implication of total regularity (because we DO NOT understand what space-time
singularities are YET): at best we can keep looking for further types of pathologies in
specific space-times, while we await for a better description of the gravitational field in the
high-energy regime.

I Metric-affine theories of gravity represent a promising framework to study such a regime.
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Advanced method: the mapping procedure

I Let us recall the structure of the RBG field equations in qµν frame

Gµ
ν(q) =

κ2

|Ω̂|1/2

[
T µ

ν−δ
µ

ν

(
LG + T

2

)]
I Fundamental difficulty:

I Note that qαβ = gαρΩρ
β and Ωρ

β is a nonlinear function of T µ
ν, which itself

depends on gµν.
I There are certain configurations with high symmetry (cosmology, BHs, ...) in which

specific models can be treated (as we just showed).
I Dynamical scenarios with less symmetry are plagued by technical difficulties.
I The application of numerical methods must be strongly model dependent and

computationally expensive because of the need to invert the relation between the
metrics at each step.

I Idea: rewrite the EOM in pure Einstein field equations form: Gµν(q) = κ2T̃µν(q).
I To do it so we rewrite the RBG action as (introducing suitable auxiliary fields)

S(gµν,Γ
λ
µν,ψm) =

1
2κ2

∫
d4x
√
−qqµνRµν(Γ) + S̃m(gµν,ψm) (367)

which is nothing but GR for the metric qµν coupled to a new matter action S̃m for the set of
matter fields ψm . Its energy-momentum tensor is written in the usual way as

T̃µν(q)≡− 2√
−q

δS̃m

δqµν
=

1

|Ω̂|1/2

[
T µ

ν−δ
µ

ν

(
LG + T

2

)]
(368)
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Casting the mapping

I Assuming two anisotropic fluid in the RBG and GR frames

T µ
ν (g) = (ρ + p⊥)uµuν + p⊥δ

µ
v + (pr −p⊥)χ

µ
χν (369)

T̃ µ
ν (q) =

(
ρ

q + pq
⊥
)

vµvv + pq
⊥δ

µ
v +
(
pq

r −pq
⊥
)

ξ
µ
ξv (370)

this mapping implies that42

pq
⊥ = 1

|Ω̂|1/2

[
ρ−pr

2
−LG

]
(371)

ρ
q + pq

⊥ = ρ+p⊥
|Ω̂|1/2 (372)

pq
r −pq

⊥ = pr−p⊥
|Ω̂|1/2 (373)

I Cooking recipe:
I Select a known RBG coupled to some matter source (ρ,pr ,p⊥) and compute |Ω̂|.
I Use the mapping equations to find (ρq ,pq

r ,p
q
⊥) and reconstruct the matter

Lagrangian on the GR side.
I Use any known solution for that GR matter source qµν to generate the one in RBG

gµν via qαβ = gαρΩρ
β.

I Consistence checked for electromagnetic43and scalar44 fields.
42V. I. Afonso, G. J. Olmo and D. Rubiera-Garcia, Phys. Rev. D 97 (2018) no.2, 021503.
43V. I. Afonso, G. J. Olmo, E. Orazi and D. Rubiera-Garcia, Eur. Phys. J. C 78 (2018) no.10, 866
44V. I. Afonso, G. J. Olmo, E. Orazi and D. Rubiera-Garcia, Phys. Rev. D 99 (2019) no.4, 044040.
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“Alchemy-ing” the mapping

I The mapping has an alchemy side to it, since it actually tends to transfer the functional
structure between the matter and gravity sectors. Considering two field invariants (in the
RBG and GR frames, respectively) X =− 1

2 FµνF µν and Z =− 1
2 ZµνZ µν one finds the

mapping:

EiBI + X ⇔ GR +
4π

κ2ε

(√
1 +

εκ2Z
2π
−1

)
(374)

EiBI +
4π

κ2ε

(
1−
√

1− κ2εX
2π

)
⇔ GR + Z (375)

I The matter sector is actually described by a Born-Infeld-type electrodynamics, provided
that one makes the identification β2 = 2π/(εκ2) and takes ε to be negative in the first
case, and positive in the second.

I Analytical solutions for GR coupled to both Maxwell and Born-Infeld are known both in the
static case (Reissner-Norström) and in the rotating one (Kerr-Newman). Solutions in the
RBG side (EiBI) can be thus generated out of the mapping.

I The largest advantage of this procedure is that it only involves algebraic transformations:
no actual differential equation-solving is required!.

I Similar alchemy can be performed when f (R) Lagrangians or scalar fields are considered.
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Rotating black holes out of the Kerr-Newman solution

I The mapping may look a bit too unaesthetic, but finding new solutions out of a given
(GR-based) seed using it is outragiously simple as compared to direct-resolution
procedures.

I The matter on the KN solution is characterized by a fluid (in coordinates of the q-frame)
ρq = Q2

8πx4 =−pq
r = pq

⊥. The mapping thus act upon this seed to generate the new

solution in the EiBI + BI side as45:

ds2 = −
(

1− f + εκ
2
ρ

q (∆ + a2 sin2 θ)

Σ

)
dt2−2a

(
f − εκ

2
ρ

q (∆ + x2 + a2)

Σ

)
sin2

θdtdφ

+
(1 + εκ2ρq)Σ

∆
dx2 + (1− εκ

2
ρ

q)Σdθ
2

+
[(

x2 + a2 + fa2 sin2
θ
)
− εκ

2
ρ

q (x2 + a2)2 + a2∆sin2 θ

Σ

]
sin2

θdφ
2 ,

where f ,∆,Σ,a are the canonical objects of the Kerr black hole, while the ε-EiBI
corrections are fed by the energy density of the electromagnetic field ρq .

I Astrophysical phenomenology: GWs, echoes, lensing46, shadows...

45M. Guerrero, G. Mora-Pérez, G. J. Olmo, E. Orazi and D. Rubiera-Garcia, JCAP 07 (2020), 058.
46M. Sabir Ali, S. Kaushal, arXiv:2106.08464 [gr-qc].
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Rotating Kerr-Newman black holes in EiBI gravity - I

I An upgrade has also been recently achieved to map the entire space of NEDs between
GR and EiBI, including the most physically interesting case of EiBI + Maxwell.

I The seed solution is an infinite family of solutions given by a Kerr-like line element

ds2
q = −

(
1− 2ηr

Σ

)
dt2 +

Σ

∆
dr2−2asin2

θ
2ηr
Σ

dtdφ

+ Σdθ
2 +

sin2 θ

Σ

[
(r2 + a2)2−a2∆sin2

θ)
]

dφ
2 , (376)

with the usual definitions:

Σ = r2 + a2 cos2
θ, (377)

2η = r(1− f ), (378)

∆ = r2f + a2 = r2−2ηr + a2 , (379)

while for NEDs we have:

f (r) = 1− 2M
r
− 1

r

∫
∞

r
R2T 0

0 (R,Q)dR , (380)
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Rotating Kerr-Newman black holes in EiBI gravity - II

I The mapping provides an answer to its countepart on the RBG side after selecting the
target theories for the gravitational and matter sectors

I For EiBI coupled to Maxwell theory the mapping tells us its counterpart on the GR side to
be GR + BI-type electrodynamics. In such a case one has

f (r) = 1− 2M
r

+
2β2

3

[
r2−

√
r4 + Q2/β2 +

2Q2

β2r2 2F1

[1
4
,

1
2
,

5
4
,
−Q2

β2r4

]]
(381)

ρ
q =

2βr2

Σ2

(√
β2r4 + Q2−βr2

)
;K =−ρ

q +
2β

Σ

(
2βr2− 2β2r4 + Q2√

β2r4 + Q2

)
,(382)

where 2F1[a,b,c;z] is a hypergeometric function.
I The mapping-generated, space-time metric is formally given by gµν = qµν + εhµν, with qµν

the seed rotating GR + BI metric, and the correction term hµν given by

htt = − 1
Σ (ρ

qa2 sin2
θ + K (ρ

q)∆) (383)

hrr = Σ
∆ K (ρ

q) (384)

hθθ = −Σρ
q (385)

htφ = asin2 θ

Σ

(
ρ

q(r2 + a2) + K (ρ
q)∆

)
(386)

hφφ = − sin2 θ

Σ

(
ρ

q(r2 + a2)2 + a2 sin2
θK (ρ

q)∆
)

(387)

I Infinitely many new exact rotating solutions can be generated out of this procedure by
selecting other seed GR-based metrics and working out the correspondences of theories
between frames.
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Bonus track: the gauge approach to gravity

Figure: Under construction
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Proposals for thesis on black hole physics

I Rotating Kerr-like black holes .
I Hawking’s semiclassical integral of quantum vacuum polarization effects.
I Information loss paradox.
I Black holes embedded in Anti-de Sitter spaces.
I Phase transitions/black hole evaporation.
I Photon sphere, strong gravitational lensing, and observables.
I Black hole shadows.
I Perturbations and stability.
I Gravitational waves and/or echoes.
I Maximal extensions.
I Gravitational collapse and/or cosmic censorship conjecture.
I Dynamical solutions.
I Energy extraction: Penrose process and superradiance.
I Accretion processes and mass inflation instability.
I Geodesic behaviour in rotating black holes.
I Microscopic black holes and remnants.
I Horizonless compact objects.
I Wormholes.
I Non-linear electrodynamics/non-abelian black holes.
I Stellar structure limits and limiting masses.
I Observational tests of GR/tests of Kerr solution.
I Connections to quantum gravity/beyond GR black holes.
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