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Rotational Core-Collapse Supernovae

Deep-Learning
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Dataset Construction
Results:
o Classification

o Parameter Inference




Gravitational collapse of the core of massive
stars and the subsequent explosion of such

stars as supernovae.

May provide valuable information about the
physical processes operating during the
gravitational collapse of the iron cores of

massive stars.




Deep-Learning

For Classification and Regression:
Residual Convolutional Neural Networks (ResCNN)
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Integration of residual network and convolutional neural network
along with various activation functions and global pooling for time g

series classification
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ARTICLE INFO ABSTRACT
Arﬁfl_t’ history: In this paper, we devise a hybrid scheme, which integrates residual network with convolutional neural
Received 27 May 2019 network, for time series classification. In the devised method, the architecture of network is constructed
Revised 21 july 2019 by facilitating a residual learning block at the first three convolutional layers to combine the strength
Accepted 8 August 2019 " o . B . .

g " of both methods. Further, different activation functions are used in different layers to achieve a decent
Available online 9 August 2019 B iy . . i s

abstraction. Additionally, to alleviate overfitting, the pooling operation is removed and the features are fed

Communicated by Steven Hoi into a global average pooling instead of a fully connected layer. The resulting scheme requires no heavy

preprocessing of raw data or feature crafting, thus could be easily deployed. To evaluate our method, we
test it on 44 benchmark datasets and compare its performance with related methods. The results show
that our method can deliver competitive performance among state-of-the-art methods.

© 2019 Elsevier B.V. All rights reserved.
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Spectrogram of a CCSN signal.
[Figura 4 from Gabriel Mas, Trabajo de Fin de Grado]
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Time-domain waveforms from CCSN
[Fig. 4 from Richers et al (1701.02752)]



D ata S Ets (:0 N Stru [tl 0n e Selection of CCSN waveforms from the catalog

developed by Richers et al:
> 0,<3.0
t <1.0s

collapse

e Selection of parameter space

Equation of State Effects on Gravitational Waves from Rotating Core Collapse
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Gravitational waves (GWs) generated by axisymmetric rotating collapse, bounce, and early post- Of eac h d etecto r,
bounce phases of a galactic core-collapse supernova will be detectable by current-generation gravi-
tational wave observatories. Since these GWs are emitted from the quadrupole-deformed nuclear- ° Wh |t en | n g
density core, they may encode information on the uncertain nuclear equation of state (EOS). We .
examine the effects of the nuclear EOS on GWs from rotating core collapse and carry out 1824 ax-
isymmetric general-relativistic hydrodynamic simulations that cover a parameter space of 98 differ-
ent rotation profiles and 18 different EOS. We show that the bounce GW signal is largely independent
of the EOS and sensitive primarily to the ratio of rotational to gravitational energy, T'/|W|, and at
high rotation rates, to the degree of differential rotation. The GW frequency ( fpeax ~ 600—1000 Hz)
of postbounce core oscillations shows stronger EOS dependence that can be parameterized by the
core’s EOS-dependent dynamical frequency /Gp.. We find that the ratio of the peak frequency
to the dynamical frequency fpeak/v/Gpe follows a universal trend that is obeyed by all EOS and




Classification Tests

GOAL: Separate signals from noise

Test 1:

10k TimeSeries

Fixed distance (20 kPc);

Fixed sky position and polarization angle;
Fixed inclination (11/2);

Comparison with results from spectrograms;

Test 2:

e 10k TimeSeries
e distance between 5 and 20 kPc;
e Random sky position and polarization

angle;
Fixed inclination (1/2);



[——WValid Loss |
—— Train Loss

Classification Test 1

e Best model found at epoch 25 with valid loss
value of 0.0295. |

e Accuracy: 0.99 ' 5 10 15

Number of Epochs




Confusion matrix

Classification Test 1

e No actual noise classified as signal;

e Only 1% of actual signals was predicted as
noise;




Spectrograms vs Time Series
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—— Valid Loss
- Train Loss

Classification Test 2

e Best model found at epoch 24 with valid loss
value of 0.1247.

e Accuracy: 0.96

10 15
Number of Epochs




Confusion matrix

Classification Test 2

e No actual noise classified as signal;

e Only 7% of actual signals was predicted as
noise;




Regression

GOAL: Parameter Inference

10k TimeSeries;

distance between 5 and 20 kPc;
Random sky position;

Fixed inclination (11/2);

Inference:
> Frequency at the peak of the signal, f
> Amplitude of the signal, Ah

peak

13



'—— Valid Loss
——— Train Loss

Regression

e Best model found at epoch 20 with valid loss
value of 0.1164.

e RMSE: 0.34 25 50 7.5 100 125 150 17.5 20.0

Number of Epochs
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Conclusions

e Amazing results for
Classifications
Elﬂd e Good results for Regression

NEX[ S[EDS What's next?

e Larger Datasets;
e Inference on other parameters




Attachments




Classification Test 1

Dataset:
e 5k TimeSeries of noise;
e 5k TimeSeries of signals: 8001
o 1 second window 6001
o Sample rate: 4096Hz o
o 999 different waveforms with w, < 3.0 200
o Distance: 20 kPc
o Inclination = 1/2 *1
o Declination, polarization and right ascension =0 Zoo
Network: ™
° Batch Size = 8
° Model: ResCNN(3,2) .
e  Weight decay: 1e-3 %]
e  Maximum learning rate: 0.5 164
e  Monitoring: valid loss
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Classification Test

Dataset:

5k TimeSeries of noise

5k TimeSeries of signals:

o

o

o

o

o

Network:
Batch size =15
Model: ResCNN(3,2)
Weight decay: 1e-3

1 second window

Sample rate: 4096Hz

999 different waveforms with w, < 3.0
Distance: [5, 20] kPc

Inclination = 1t/2

Maximum learning rate: 0.05

Monitoring: valid loss
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