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Overview

e Mapping operators in SUSY theories: chiral ring and conserved
currents

e The long U multiplet and the supercurrent multiplet
e SQCD in the free magnetic phase

e Deformed moduli space

e Kutasov theory and the UV superpotential

e Adjoint SQCD

e Soft deformations, §£ D m?2U|.

e Sketch of a model of EWSB



Mapping Operators in SUSY theories
e UV complete QFT: RG flow between a UV and IR fixed point.

e \We will study only asymptotically free theories like SQCD and
some simple generalizations. Simple to generalize further.

e Question: given OVV what is O1£7?

e Easy operators to map: short multiplets, like members of the
chiral ring, conserved currents.

e Harder operators to map: long multiplets.

e Sometimes can embed these long multiplets inside short mul-
tiplets of higher spin and use these larger multiplets to gain
traction.



Mapping Operators in SUSY theories (cont...)

e Quantities of interest, real UV bilinears:
o o
c;®P; P!+ DD (1)
Appropriate factors of ¢V, etc.

e For generic c,c this defines a long multiplet, i.e.,

D? (il + EB[PI) = cTrw2 + ... (2)
e Can we map such an operator to the IR?

e o do that, we need a short multiplet in which to embed
it. Natural candidates: symmetry currents of various kinds. R-
symmetry current a good option (if present).

e \We will study theories with an R-symmetry.



The Role of the R-symmetry Current

e Since [R,Q] ~ Q, {Q,Q} ~ P, the R-current transforms in a
multiplet with Sy and Tj,.

DR = Xao - (3)
When yxqo = 0, this is the superconformal R-symmetry.
e There is an ambiguity in the above equation under R,; —
Raa + [Da, Dg) J and xa — xa + 3D%DqoJ for conserved J, i.e.,

D2J = 0. This affects the su percurrent and stress tensor through
improvements.

e For the theories we will consider, can write

Xao = DzDaU ) (4)



for a well-defined U.

e Solving the above equations in the UV, we find

Rgg = Z (2Da¢iDdcT>i — Tz'[Doz, Doz] CD,LCTDZ) ,
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o U fixed upto U - U+Y 4+ Y. Will see later that such terms
may appear in the IR.



The R-symmetry Current and the RG Flow
e Idea: Use the R-multiplet to follow U along the flow.

e At the IR fixed point, we know what should happen to R,g- In-
deed, either this multiplet flows to the superconformal R-multiplet
or to an object that can be improved to the superconformal R-
multiplet:

_ 3
Red " =RLE — Do, D) . UFT=0""—Z7=0. (6)

Determine REET from duality or a-maximization.

e Upshot: Therefore, U — %J.



e J may be a conserved current of the full theory or an accidental
symmetry of the IR. We will see an extreme version of this for
SQCD in the free magnetic range.

e In the case that U/® = 0, we can say a bit more using conformal
perturbation theory. If approach is via a marginally irrelevant
operator, we have U ~ ~J. Otherwise, we have U ~ A2~9¢O for
d > 2 (using unitarity).

e In the case of a free magnetic phase, we have

R =3 (1-25) Fs; (7)

for the “emergent” d.o.f’s.



Example I. SQCD in the Free Magnetic Range

e Consider SU(N¢) with Ne+ 1 < Ny < 3N¢/2: this is a flow

between Gaussian fixed points

e The UV (electric) theory:
SU(Nc) SU(Ny) x SU(Ng) U(1)g

Q Nec Ny x 1 —%Jg
Q Nec 1 x N¢ —%;

U(1)g
1 (8)
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e Some bilinears that we can write are c{QiQ} + EfQZQ';f What

are they in the IR?



e \We have the following IR (magnetic) theory

SU(Ny—Neo)  SU(Np) x SU(Ny)  U(Dg

Ne¢

q ?f—§c Nf X—]_ ?

q N¢ — Ne¢ 1 x Ny W]Cc
M 1 Nf X Nf 2 — 2%

e Some objects are trivial to map, e.g. QQT—OOT

(9)




Example I: SQCD in the Free Magnetic Range (cont...)

e But what about J4 = QQT 4+ QQT? It is not conserved:
D?J = Trw2 . (10)

e Claim: We can follow this operator using the R multiplet.
Indeed, using the R-charge assignments in the electric table, we
find

vv _ (1 3Ne 4 oot
U _( 2+2Nf>(cz@ +QQT) (11)

e Using the R-charge assignments in the IR, we find

IR __ ¢ T ~~ ¢ T




e [ herefore, we find
2Nf — 3Ne

(aTell
Q@' +Q0" — Sy—r

(q¢" +ag" —2MMT)  (13)

e Acting with D? on both sides of the above equation, we find
2Nf —3Ne__ 5

2
Wa,el 3N, — Nf Wa,mag

(14)

e [ his gives the physical relation between the two field strengths.



Example II: The Deformed Moduli Space
e Consider SQCD with Nf = N¢ > 2

e The IR is described by M and B satisfying
det M — BB = N?Ne (15)

Therefore some of the short distance symmetries are sponta-
neously broken.

e Will find some ambiguities in following U. In some vacua we
will have enough (broken) symmetry to fix U. In others we won't,
but we won't discuss these cases here.



Example II: The Deformed Moduli Space (cont...)

e Consider first the following vacuum
M=0, B =B = AN, (16)
e In this vacuum the symmetry is broken as follows

SU(Nf)LXSU(Nf)RXU(l)BXU(l)R<—> SU(Nf)LXSU(Nf)RXU(l)R
(17)
e \We can use our previous techniques to fix U as follows:

U=05M5SM' + 6b5bT (18)
where 6b is the Goldstone superfield for the U(1)p breaking.

e Demanding invariance under the (non-linearly realized) U(1)p
symmetry requires

Q0T + 00T — Tr (5M5MT) + %(519 + 6612 . (19)
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e Note that this fixes the holomorphic + anti-holomorphic am-
biguity.
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Example III: The Kutasov Theory

e We consider the following electric theory with 4¢ < N; < 54

SU(N:.) SU(N,) x SU(N;) — UQQ)g  U()g

N
Q N 1 x N¢ 1-— %% ~1
X N2Z2_-1 1x1 T 0
and the following superpotential
(21)

W = sgTr(XFt1) .
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e And the following magnetic theory

SU(ka — Nc) SU(Nf) X SU(Nf) U(l)R
= kN ¢—N¢
q kNg — N Ng x 1 1— 21 —%
_ > kN¢—N¢c
G kN — Ne 1 x Ng R = .
Y  (kN;—Ne¢)2 -1 1x1 ) N%Q
(22)

and the following superpotential

k
S S 4
Wmag = — 0 Tr Yk_l_l -+ 20 Z quyk ]q . (23)
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Example III: The Kutasov Theory (cont...)

e [ he UV superpotential breaks the symmetry associated with
the current

Jv =
XNf

(QRQT+ Q4T — xxT. (24)

e Using baryon matching we can fix the coefficient of YYTin the
IR.

e [ his operator cannot be followed using the R-multiplet

e But, using our previous tricks, there is another interesting long
multiplet that we can follow

1 3 Ne ~ ~ 3
e (e ) o 2w o
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e Using the R multiplet we find that in the IR
3

(1. 3 ENj—Ne .
vt = <_§+k+1 N; >(qu+ T)+<1_k+—1>yw

B 6 Nc_3(j_1) VAl
N ;( 2+l~c-|—1Nf k+1 )MJMJ' (26)

e [ herefore:
3

3 Ne¢ ~ ~
Hle) (QQT+QQT)+(1_—k+1)Xxu
3

1
2—|-
1 3 kNj—N, .
TS >(qu+ T>+<1_k+—1)yw

k—l—le k+1 J
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Example IV: Adjoint SQCD

e We have focused mostly on theories with a free IR description.

Here we will discuss adjoint SQCD. It is believed to flow to an
interacting IR SCFT.

SU(N:) SU(Ny) x SU(Ny) U)p UQ) U1)p

2N¢
? T-C Nf X_]_ 1 —ﬁ 1 1
Q N¢ 1 x N¢ 1 -3y 1 —1
X N2-1 1x1 2/3 ~1 0
(28)

e Don't know much about the IR, but we can infer when some
fields M* = QX'Q become free—e.g. for N;/Ne < (3+ vV7)7L,
Mgy = QQ becomes free.
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e Using out techniques, we can map

P(N/Ne)

1 N. < ~ 3R(M;)
_ -4 e t Yy _ J RVl
( 2+Nf> (QQT + Q@) j;o (1 > )M3M3+~-
P(N/Ne)

= - Y <j 10— 2%) M;M] €29)

i=0 f
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Applications: Soft SUSY Breaking Terms

e At weak coupling, soft breaking terms can be thought of as
bottom components of current multiplets.

e Idea: Deform the UV by adding a probe soft term and see
what happens in the IR. 6L = —m2J| straightforward to follow
for conserved J. We can use our results to follow what happens
when we deform by a (non)-conserved current, §£ = —m?2U|, and
make contact with the literature (e.g., [Arkani-Hamed, Rattazzil,

[Luty, Rattazzil], [Cheng, Shadmi], [Fukushima, Kitano, Yamaguchi],..

e More concretely, in SQCD in the free magnetic range suppose
we add in the UV

0Le = —mPJs|l-mA(WZ g+h0)| = —m? (QQT + Q1) +m (A3 +c.c.)
(30)
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e [ hen, we find that in the IR

2N;— 3N N
0Lmag = 2. 3]\]; Nfc (qu+qu—2MMT)
CcC
2N 3N,
f— C
m - 3N, — N, (>\ ag"‘cc) (31)

e In particular, we find the well-known tachyonic squarks in the
IR.

e All is not lost, however—even though the magnetic D-terms
and superpotential don't help. Indeed, we can weakly gauge
baryon number and find a minimum near the origin!

g~1.6=0, M=0 (32)
JB
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Here 1 means the matrix with the upper left (Ny—N¢) x (Ny— Nc)
block set to be proportional to the unit matrix and the rest of
the entries are set to zero.

e Calculability just requires g,h > gg >> m//\ and much smaller
than all the other couplings in the theory. This vacuum breaks
the magnetic gauge symmetry and Higgses baryon number too.
We find: SU(Ny — N¢) x SU(Nc) x SU(Ny) left over. Note color-
flavor locking.

e On the other hand, if gg >~ g,h, then we find a vacuum with

g~qg~m, M=0. (33)

e Can add more general soft terms using baryonic current and
SU(Ny) x SU(Ny) currents.
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Applications: Soft SUSY Breaking Terms (cont...)

e Can find a stable vacuum easily in deformed moduli space
example on baryonic branch [Luty, Rattazzi]

5L =—-m? (QQT+QQT) — —m? (Tr (smsmt) + %(51» + obf )2)
(34)

e Surprisingly, acting with D? on both sides of the above equa-
tion, we find that the gaugino mass gets mapped into an en-

hanced mass for the fermionic partner of the Goldstone boson
1

@Wg — Dbt DY (35)
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Applications: EWSB

e [ hese ideas also give rise to a potentially simple model of
EWSB

SU(Ne) SU2)p, UQQ)y

H Nec 2 z

aH Ne 2 -3 (36)
Pi—1..N.—1 Nec 1 2
D=1, N.—1 Ne 1 —%

Here Nf=N6—|—124.

e Baryon number is identified with hypercharge.
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e The IR is confining with baryons and mesons

e \We have the usual

wleonf) — BmMB — A3~Nrdet M (37)

e Since baryon number is identified with the hypercharge gauge
symmetry we have the previous vacuum with B~ B~m, M =
0.

e Can naturally break EW symmetry (vevs of order meys) and
keep triplets (mesons) from getting a vev.

e May get naturally large Higgs self-couplings from NMSSM-like
effect. The NMSSM term is emergent.
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Conclusions and Open Questions

e Simple mapping of operators from UV to IR. Gained some
mileage and mapped some long multiplets using short higher
spin multiplets (the R-current).

e Serious study of the pheno.

e Would like to say more about interacting SCFTs and SUSY
breaking in such theories.

e Move beyond probe approximation.
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