Naturalness and dark matter predictions for the Higgs mass in MSSM and Beyond

Dumitru Ghilencea

CERN, "SUSY Breaking, 16-21 May 2011"

NPB 835 (2010) 110, arXiv:1103.4793, with G.G. Ross, S. Cassel. NPB 848 (2011) 1, NPB 831 (2010) 133, with I. Antoniadis, E. Dudas, P. Tziveloglou. • Standard Model (SM): best model so far.

- Agrees with experiment. Open questions: hierarchy, EWSB, unification, DM, gravity,....

 $- \delta m_h^2 \sim \mathcal{F}(\alpha_i^0, m_j^0) \Lambda_{UV}^2, \qquad \Lambda_{UV} \sim M_{Planck}: \Rightarrow \text{Hierarchy problem} \Leftrightarrow \text{fine tuning}.$ - two faces of the same problem.

• MSSM. SUSY searches.

- $\delta m_h^2 \sim m_{susy}^2 \log \Lambda_{UV}^2 / m_{susy}^2$ $m_{susy} \sim \text{TeV};$ $m_{susy} \sim \Lambda_{UV} \Rightarrow \text{SM fine-tuning}$

$$\begin{aligned} \mathcal{L} &= \int d^{4}\theta \sum_{\Phi} \mathcal{Z}_{\Phi} \, \Phi^{\dagger} e^{V} \, \Phi + \Big\{ \sum_{i=1,2,3.} \int d^{2}\theta \, \frac{1}{g_{i}^{2}} \, \left(1 + m_{1/2} \theta \theta \right) \, \mathrm{Tr} \, W^{\alpha} \, W_{\alpha}|_{i} + h.c. \Big\} \\ &+ \int d^{2}\theta \left[H_{2} \, Q \, \lambda_{U} \, U^{c} + Q \, \lambda_{D} \, D^{c} \, H_{1} + L \, \lambda_{E} \, E^{c} \, H_{1} + \mu \, H_{1} \, H_{2} \right] + h.c., \, \Phi : H_{1,2}, Q, U^{c}, D^{c}, E^{c}, L \\ \mathcal{Z}_{\Phi}(S, S^{\dagger}) = 1 - S \, S^{\dagger}, \, S = \theta \theta \, m_{0}; \, m_{0} = \frac{\langle F_{hid} \rangle}{M_{P}}, \, \lambda_{F}(S) = \lambda_{F}(0)(1 + A_{0} \, S), \, \mu(S) = \mu_{0} \, (1 + B_{0} S) \\ &A_{0}, B_{0}, \mu_{0}, m_{0}, m_{1/2}, \tan \beta = v_{2}/v_{1} \end{aligned}$$

[2]

• MSSM scalar potential:

$$V = m_1^2 |H_1|^2 + m_2^2 |H_2|^2 - (B_0 \mu_0 H_1 \cdot H_2 + h.c.) + \lambda_1/2 |H_1|^4 + \lambda_2/2 |H_2|^4 + \lambda_3 |H_1|^2 |H_2|^2 + \lambda_4 |H_1 \cdot H_2|^2 + \left[\lambda_5/2 (H_1 \cdot H_2)^2 + \lambda_6 |H_1|^2 (H_1 \cdot H_2) + \lambda_7 |H_2|^2 (H_1 \cdot H_2) + h.c. \right]$$

Tree-level: $\lambda_{1,2} = (g_1^2 + g_2^2)/4$, $\lambda_3 = (g_2^2 - g_1^2)/4$, $\lambda_4 = -g_2^2/2$, $\lambda_{5,6,7} = 0$

$$m^{2} \equiv m_{1}^{2} \cos^{2}\beta + m_{2}^{2} \sin^{2}\beta - B_{0} \mu_{0} \sin 2\beta, \quad \text{UV} : m_{1,2}^{2} = m_{0}^{2} + \mu_{0}^{2}$$
$$\lambda \equiv \frac{\lambda_{1}}{2} \cos^{4}\beta + \frac{\lambda_{2}}{2} \sin^{4}\beta + \frac{\lambda_{345}}{4} \sin^{2} 2\beta + \sin 2\beta \left(\lambda_{6} \cos^{2} \beta + \lambda_{7} \sin^{2} \beta\right)$$

• The Problem:

 $v^2 = -m^2/\lambda, \quad v = \mathcal{O}(100 \text{ GeV}), \quad \lambda < 1, \quad \text{but} \quad m, \, m_{1,2}, B_0 \sim \mathcal{O}(1 \text{ TeV}).$

- "residual" fine-tuning (little hierarchy). Tree level: $m_h < m_Z$, LEP2: > 114.4 GeV
- Need: large quantum corrections (QC) \Rightarrow large m_{susy} . But QC can also increase λ and $m_h^2 \propto \lambda v^2$
- This is not only a problem of scales but of couplings (λ_{MSSM} small). $\delta\lambda > 0$ vs. $m_{susy}^2 \sim m^2$

[3]

• EW fine-tuning measures as a test of SUSY

$$\Delta \equiv \max \left| \Delta_p \right|_{p = \{\mu_0^2, m_0^2, m_{1/2}^2, A_0^2, B_0^2\}}, \quad \text{or} \quad \Delta' \equiv \left(\sum_p \Delta_p^2 \right)^{1/2}, \qquad \Delta_p \equiv \frac{\partial \ln v^2}{\partial \ln p}$$
$$v^2 = -m^2/\lambda, \quad 2\lambda \frac{\partial m^2}{\partial \beta} = m^2 \frac{\partial \lambda}{\partial \beta}, \quad \Rightarrow \quad m^2, \lambda = F(p, \beta(p)),$$

• Exact formula:

$$\Delta_{p} = -\frac{p}{z} \left[\left(2\frac{\partial^{2}m^{2}}{\partial\beta^{2}} + v^{2}\frac{\partial^{2}\lambda}{\partial\beta^{2}} \right) \left(\frac{\partial\lambda}{\partial p} + \frac{1}{v^{2}}\frac{\partial m^{2}}{\partial p} \right) + \frac{\partial m^{2}}{\partial\beta}\frac{\partial^{2}\lambda}{\partial\beta\partial p} - \frac{\partial\lambda}{\partial\beta}\frac{\partial^{2}m^{2}}{\partial\beta\partial p} \right]$$
$$z \equiv \lambda \left(2\frac{\partial^{2}m^{2}}{\partial\beta^{2}} + v^{2}\frac{\partial^{2}\lambda}{\partial\beta^{2}} \right) - \frac{v^{2}}{2} \left(\frac{\partial\lambda}{\partial\beta} \right)^{2}, \qquad \Delta_{p} = \frac{p}{m_{Z}^{2}(1+\delta)} + \mathcal{O}\left[\frac{1}{\tan\beta} \right], \ \delta : \text{QC top Y.}$$

- $p_i \sim 1/\Delta$: "effective prior" emerges automatically in Bayesian fits [Casas et al 2008]
- if Δ too large: SUSY fails... Wanted: Δ minimal, for low UV sensitivity.
- Many studies: Δ : 1-loop. $\Delta \sim 100$ but $\Delta \sim m_0^2 \sim \exp(m_h^2/v^2)$!. [Pokorski, Ellis et al]
- 2-loop study (SoftSusy, micrOMEGAs: 6years 30×3 GHz). Impose usual constraints: TH + EXP

but NO LEP bound on $m_h!$

• 2-loop results in CMSSM: min $\Delta \Rightarrow m_h = ?$

- \Rightarrow minimal $\Delta \propto \exp(m_h^2/v^2) \Rightarrow$ 2-loop effects important!
- \Rightarrow without LEP2 bound on m_h , min Δ : $\Delta \approx 9 \Rightarrow m_h = 114 \pm 2$ GeV, (just above LEP2 bound!)
- \Rightarrow CMSSM: Δ less than usually thought, when using the correct, 2-loop Δ .
- \Rightarrow Same result (m_h) and behaviour if using min of $\Delta' = \sqrt{\sum_p \Delta_p^2}$, (1 to 2 GeV variations).
- \Rightarrow dotted line: increase α_3 (1 σ), reduce m_t (1 σ) \Rightarrow QCD does not like large m_h ! (fine-tuning cost)

• 2-loop results in CMSSM: min Δ + dark matter $\Rightarrow m_h = ?$ [S. Cassel, DG, G. Ross]

LSP: good dark matter candidate \Rightarrow dark matter constraint:

WMAP: $\Omega h^2 = 0.1099 \pm 0.0062$; blue: Ωh^2 not-saturated; red: Ω saturated: 1σ (left); 3σ (right). \Rightarrow Prediction from: Min Δ + "right" dark matter abundance, (no LEP2 bound):

> $m_h = 114.7 \pm 2 \text{ GeV}, \quad \Delta = 15.0, \quad \text{(consistent with WMAP bound)}.$ $m_h = 115.9 \pm 2 \text{ GeV}, \quad \Delta = 17.8, \quad \text{(saturating WMAP within } 3\sigma\text{)}.$

• an upper bound on $\Delta \Rightarrow$ bounds on SUSY spectrum. $\Delta < 1000 \Rightarrow m_h < 126 \text{ GeV} (\pm 2 \text{ to 3 GeV})$ $\Delta < 100 \Rightarrow m_h < 121 \text{ GeV} (\pm 2 \text{ to 3 GeV})$ • 2-loop results in CMSSM: min Δ & the LHC @ 7 TeV reach. [S. Cassel, DG, G. Ross]

⇒ Left: points Δ < 1000: blue: consistent with WMAP (3σ deviation); red: saturate it within 3σ.
Points in lighter (darker) red/blue have m_h below (above) LEP2 bound for m_h.
⇒ Right: Atlas exclusion limits (red curve, observed) for tan β = 3, A₀ = 0, μ > 0. arXiv:1102.5290.
Atlas is already testing CMSSM points with Δ < 100 and m_h > 114 GeV. (± 2 to 3 GeV)

⇒ Left: points $\Delta < 100$: blue: consistent with WMAP (3 σ deviation); red: saturate it within 3 σ . Points in lighter (darker) red/blue have m_h below (above) LEP2 bound for m_h . ⇒ Right: Atlas exclusion limits (red curve, observed) for tan $\beta = 3$, $A_0 = 0$, $\mu > 0$. arXiv:1102.5290.

Atlas is already testing CMSSM points with $\Delta < 100$ and $m_h > 114$ GeV.

 $\Rightarrow m_h < 121 \text{ GeV}, \ m_0 < 3200, \ 120 < m_{1/2} < 720, \ \mu < 680, \ -2000 < A_0 < 2500, \text{ GeV}, \ \tan \beta > 5.5$ $\chi_1^0 < 305, \ \chi_2^0 < 550, \ \chi_3^0 < 660, \ \chi_4^0 < 665, \ \chi_1^{\pm} < 550, \ \chi_2^{\pm} < 670, \ \tilde{g} < 1700, \ \tilde{t}_1 < 2080, \ \tilde{t}_2 < 2660$ $\tilde{b}_1 < 2660, \ \tilde{b}_2 < 3140 \text{ GeV}$

⇒ Left: points $\Delta < 50$: blue: consistent with WMAP (3 σ deviation); red: saturate it within 3 σ . Points in lighter (darker) red/blue have m_h below (above) LEP2 bound for m_h . ⇒ Right: points $\Delta < 20$.

 \Rightarrow small(er) area in moduli space $(m_0, m_{1/2})$: not an indication/measure of (large) fine-tuning! "moduli fixing" \neq fine tuning • Two-loop results in CMSSM: min Δ and LHC @ 7 TeV reach; $m_h > 114$ GeV.

 $\Delta < 100$; dark colours: Ωh^2 within 3σ ; light colours: below this bound.

LHC 7 TeV: $\mathcal{O}(1)$ fb⁻¹; $m_{\tilde{g}} \sim 1.1$ TeV if $m_{\tilde{q}} \sim m_{\tilde{g}}$; $m_{\tilde{g}} \sim 620$ GeV, $m_{\tilde{q}} \gg m_{\tilde{g}}$ [Baer, Barger, Tata, Lessa]

- purple: LSP: higgsino 10%, heavy squarks
- red: LSP: bino-like, heavy squarks (TeV), focus point region.
- green: LSP: bino-like. light squarks. [S. Cassel, DG, S. Kraml, G. Ross, A. Lessa]

[9]

- How do these results m_h change under "new physics" ?
- large(r) m_h at low Δ ?

(a). to relax CMSSM constraints (gaugino univ); symmetries... [Kane, King, Ross, Horton, 09]

(b). "new physics" beyond MSSM, that increases m_h and reduces Δ : U(1)', extra S, D of SU(2)... Effective approach: MSSM Higgs+ effective operators $(X_{n,i})$

$$\mathcal{L} = \mathcal{L}_{MSSM}^{Higgs} + \sum_{n \ge 1, i} \frac{\rho_{n, i}}{M_*^n} X_{n, i}, \quad \rho_{i, n} \sim \mathcal{O}(1); \quad M_* : \text{scale of "new physics"}$$

 $X_{n,i}$ effective operators, parametrize new physics beyond MSSM Higgs sector.

- generated in renormalisable theories, after integrating some massive states.
- We consider: (d=5), (d=6) operators; corrections to m_h ?

 $\mathcal{L}_{MSSM}^{Higgs} + \mathcal{L}_i(\propto 1/M_*) + \mathcal{O}_i(\propto 1/M_*^2)$

[11]

• d=5 operators beyond MSSM Higgs:

[DG, Antoniadis, Dudas, Tziveloglou]

$$\mathcal{L}_{1} = \frac{1}{M_{*}} \int d^{2}\theta \, \zeta(S) \, (H_{2}.H_{1})^{2} + h.c., \qquad [S,T]$$

$$\mathcal{L}_{2} = \frac{1}{M_{*}} \int d^{4}\theta \, \Big\{ \, a(S,S^{\dagger})D^{\alpha} \Big[b(S,S^{\dagger}) \, H_{2} \, e^{-V_{1}} \Big] D_{\alpha} \Big[c(S,S^{\dagger}) \, e^{V_{1}} \, H_{1} \Big] + h.c. \Big\}, \quad [D]$$

• d=6 operators:

$$\mathcal{O}_{i} = \frac{1}{M_{*}^{2}} \int d^{4}\theta \ \mathcal{Z}_{i}(S, S^{\dagger}) \ (H_{i}^{\dagger} e^{V_{i}} H_{i})^{2}, \qquad i = 1, 2. \qquad (T, U(1))$$

$$\mathcal{O}_{3} = \frac{1}{M_{*}^{2}} \int d^{4}\theta \ \mathcal{Z}_{3}(S, S^{\dagger}) \ (H_{1}^{\dagger} e^{V_{1}} H_{1}) \ (H_{2}^{\dagger} e^{V_{2}} H_{2}), \qquad (T, U(1))$$

$$\mathcal{O}_{4} = \frac{1}{M_{*}^{2}} \int d^{4}\theta \ \mathcal{Z}_{4}(S, S^{\dagger}) \ (H_{2} H_{1}) \ (H_{2} H_{1})^{\dagger}, \tag{S}$$

$$\mathcal{O}_5 = \frac{1}{M_*^2} \int d^4\theta \ \mathcal{Z}_5(S, S^{\dagger}) \ (H_1^{\dagger} e^{V_1} H_1) \ (H_2 H_1 + h.c.), \qquad (2D, S)$$

$$\mathcal{O}_{6} = \frac{1}{M_{*}^{2}} \int d^{4}\theta \ \mathcal{Z}_{6}(S, S^{\dagger}) \ (H_{2}^{\dagger} e^{V_{2}} H_{2}) \ (H_{2} H_{1} + h.c.), \qquad (2D, S)$$

$$\mathcal{O}_{7} = \frac{1}{M_{*}^{2}} \int d^{2}\theta \, \frac{1}{16\kappa \, g_{i}^{2}} \mathcal{Z}_{7}(S,0) \, \operatorname{Tr} W_{i}^{\alpha} W_{i,\alpha} \left(H_{2} \, H_{1}\right) + h.c.,$$

$$\mathcal{O}_{8} = \frac{1}{M_{*}^{2}} \int d^{4}\theta \, \left[\mathcal{Z}_{8}(0,S^{\dagger}) \, \left(H_{2} \, H_{1}\right)^{2} + h.c.\right]$$

[12]

• Other operators:

$$\mathcal{O}_{9} = \frac{1}{M_{*}^{2}} \int d^{4}\theta \ \mathcal{Z}_{9}(S, S^{\dagger}) \ H_{1}^{\dagger} \overline{\nabla}^{2} e^{V_{1}} \nabla^{2} H_{1}$$

$$\mathcal{O}_{10} = \frac{1}{M_{*}^{2}} \int d^{4}\theta \ \mathcal{Z}_{10}(S, S^{\dagger}) \ H_{2}^{\dagger} \overline{\nabla}^{2} e^{V_{2}} \nabla^{2} H_{2}$$

$$\mathcal{O}_{11} = \frac{1}{M_{*}^{2}} \int d^{4}\theta \ \mathcal{Z}_{11}(S, S^{\dagger}) \ H_{1}^{\dagger} e^{V_{1}} \nabla^{\alpha} W_{\alpha}^{(1)} H_{1}$$

$$\mathcal{O}_{12} = \frac{1}{M_{*}^{2}} \int d^{4}\theta \ \mathcal{Z}_{12}(S, S^{\dagger}) \ H_{2}^{\dagger} e^{V_{2}} \nabla^{\alpha} W_{\alpha}^{(2)} H_{2}$$

$$\mathcal{O}_{13} = \frac{1}{M_{*}^{2}} \int d^{4}\theta \ \mathcal{Z}_{13}(S, S^{\dagger}) \ H_{1}^{\dagger} e^{V_{1}} W_{\alpha}^{(1)} \nabla^{\alpha} H_{1}$$

$$\mathcal{O}_{14} = \frac{1}{M_{*}^{2}} \int d^{4}\theta \ \mathcal{Z}_{14}(S, S^{\dagger}) \ H_{2}^{\dagger} e^{V_{2}} W_{\alpha}^{(2)} \nabla^{\alpha} H_{2}$$

$$\mathcal{O}_{15} = \frac{1}{M_{*}^{2}} \int d^{4}\theta \ \mathcal{Z}_{15}(S, S^{\dagger}) \ \mathrm{Tr} \ e^{V} W^{\alpha} \ e^{-V} D^{2} \ e^{V} W_{\alpha} \ e^{-V}$$

where $\nabla_{\alpha} H_i \equiv e^{-V_i} D_{\alpha} e^{V_i} H_i$, $V_i = V_W^a \sigma^i / 2 + (\mp 1/2) V_Y$; i = 1, 2

.

 $\frac{1}{M_*^2} \mathcal{Z}_j(S, S^{\dagger}) = \alpha_{j0} + \alpha_{j1} m_0 \,\theta\theta + \alpha_{j1}^* m_0 \,\overline{\theta\theta} + \alpha_{j2} m_0^2 \,\theta\theta \overline{\theta\theta}, \qquad \alpha_{jk} \sim 1/M_*^2, \quad S = m_0 \,\theta\theta$ $\Rightarrow \mathcal{L}_2, \, \mathcal{O}_{9,\dots,15} \text{ removed by field redefinitions up to wavefunction ren, redefinition of soft terms, } \mu!$

$$\Rightarrow \quad \mathcal{L}_{total} = \mathcal{L}_{MSSM}^{Higgs} + \mathcal{L}_1 + \sum_{i=1}^{\circ} \mathcal{O}_i$$

[13]

• Comment: removing redundant operators:

[DG, Antoniadis, Dudas]

$$\mathcal{O}_{9} = \frac{1}{M_{*}^{2}} \int d^{4}\theta \ \mathcal{Z}_{9}(S, S^{\dagger}) \ H_{1}^{\dagger} \overline{\nabla}^{2} e^{V_{1}} \nabla^{2} H_{1} \sim \frac{1}{M_{*}^{2}} \int d^{4}\theta \ H_{1}^{\dagger} \Box H_{1} \supset -(1/M_{*}^{2}) \ h_{1}^{*} \Box^{2} h_{1} - h_{1}^{*} \Box h_{1} \cdots \dots$$

$$\bullet \ \mathcal{L} = \int d^{4}\theta \ \Phi^{\dagger} (1 + \Box/M_{*}^{2}) \Phi + \left[\int d^{2}\theta \ W(\Phi) + h.c. \right], \qquad \Phi^{\dagger} \Box \Phi \rightarrow (-1/16) \overline{D}^{2} \Phi^{\dagger} D^{2} \Phi$$

$$\Phi = a_{1} \Phi_{1} + a_{2} \Phi_{2}$$

$$(1/m) \ \overline{D}^{2} \Phi^{\dagger} = b_{1} \Phi_{1} + b_{2} \Phi_{2} \quad \Rightarrow \qquad \delta \mathcal{L} = \int d^{2}\theta \left[(1/m) \ \overline{D}^{2} (a_{1} \Phi_{1} + a_{2} \Phi_{2})^{\dagger} - (b_{1} \Phi_{1} + b_{2} \Phi_{2}) \right] \Phi_{3} \frac{m^{2}}{4 M_{*}}$$

$$\Rightarrow \mathcal{L} + \delta \mathcal{L} = \int d^4 \theta \Big[\tilde{\Phi}_1^{\dagger} \tilde{\Phi}_1 - \tilde{\Phi}_2^{\dagger} \tilde{\Phi}_2 - \tilde{\Phi}_3^{\dagger} \tilde{\Phi}_3 \Big] + \int d^2 \theta \, \Big[(-M_*) \, \tilde{\Phi}_2 \tilde{\Phi}_3 + W(\Phi(\tilde{\Phi}_{1,2})) \Big] + h.c. + \mathcal{O}(1/M_*^3)$$

where $\Phi = \tilde{\Phi}_2 - \tilde{\Phi}_1$; then integrate $\tilde{\Phi}_{1,2}$ (massive):

$$\mathcal{L} + \delta \mathcal{L} = \int d^4 \theta \left[\tilde{\Phi}_1^{\dagger} \tilde{\Phi}_1 - \frac{1}{M_*^2} W'^{\dagger} (\tilde{\Phi}_1) W'(\tilde{\Phi}_1) \right] + \int d^2 \theta W(\tilde{\Phi}_1) + h.c.$$

 $\mathsf{MSSM} + \mathcal{O}_9: \ \int d^4\theta \ W'^{\dagger} \ W' \to \int d^4\theta \ (\mu^2/M_*^2) \ H_2^{\dagger} \ H_2: \text{ wavefunc ren (Susy broken: soft terms ren)}$

[14]

• Fine-tuning in MSSM + (d=5) operator: $\mathcal{L}_1 = \int d^2\theta \, (\zeta_0 + \zeta_1 S) (H_1 \cdot H_2)^2$ [Cassel, DG, Ross]

$$m_{h,H}^{2} = \left(m_{h}^{2}\right)_{MSSM}^{1-loop} + 2\zeta_{0} \mu_{0} v^{2} \sin 2\beta \left(1 \pm \frac{m_{A}^{2} + m_{Z}^{2}}{\sqrt{w}}\right) + \zeta_{1} m_{0} v^{2} \left(1 \mp \frac{(m_{A}^{2} - m_{Z}^{2}) \cos^{2} 2\beta}{\sqrt{w}}\right) + \delta m_{h}^{2}$$

where $\zeta_{0}, \zeta_{1} \sim \mathcal{O}(1/M_{*}), \quad \delta m_{h}^{2} = \mathcal{O}(1/M_{*}^{2}), \quad w \equiv [m_{A}^{2} + m_{Z}^{2}]^{2} - 4m_{A}^{2} m_{Z}^{2} \cos^{2} 2\beta$

 $\Rightarrow \Delta < 10, \qquad 114.4 \le m_h \le 130 \text{ GeV}, \qquad M_* \approx 1/\zeta_0 \approx 65 \times \mu_0 = 5 \text{ to } 10 \text{ TeV}, \quad \tan \beta < 6.$ $\Rightarrow (d=5) \text{ op: massive singlet: } S H_1 H_2 + M_* S^2. \text{ Re-do analysis in NMSSM with } M_* S^2 \text{ F-term.}$ $\Rightarrow \text{ At large } \tan \beta: \text{ d=6 operators relevant: } \lambda \propto (2\mu_0 \zeta_0)^2 \sim (2\zeta_0 \mu_0)/\tan \beta \Rightarrow (2\mu_0 \zeta_0) < 1/\tan \beta$ [15]

• d=6 effective operators: corrections to m_h ($\alpha_{jk} \sim 1/M_*^2$)

$$\begin{split} \delta \, m_h^2 &= -2 \, v^2 \left[\alpha_{22} \, m_0^2 + (\alpha_{30} + \alpha_{40}) \mu_0^2 + 2 \alpha_{61} \, m_0 \, \mu_0 - \alpha_{20} \, m_Z^2 \right] - \frac{(2 \, \zeta_0 \, \mu_0)^2 \, v^4}{m_A^2 - m_Z^2} \\ &+ \frac{v^2}{\tan \beta} \left[\frac{1}{(m_A^2 - m_Z^2)} \Big(4 \, m_A^2 \left((2 \alpha_{21} + \alpha_{31} + \alpha_{41} + 2 \alpha_{81}) \, m_0 \, \mu_0 + (2 \alpha_{50} + \alpha_{60}) \, \mu_0^2 + \alpha_{62} \, m_0^2 \right) \\ &- (2 \alpha_{60} - 3 \alpha_{70}) \, m_A^2 \, m_Z^2 - (2 \alpha_{60} + \alpha_{70}) \, m_Z^4 \right) + \frac{8 \, (m_A^2 + m_Z^2) \, (\mu_0 \, m_0 \, \zeta_0 \, \zeta_1) \, v^2}{(m_A^2 - m_Z^2)^2} \right] + \mathcal{O} \Big[\frac{\tilde{m}^2}{M_*^2 \tan^2 \beta} \Big] \\ \Rightarrow \quad \delta m_h = \left(m_h^2 + \delta m_h^2 \right)^{1/2} - m_h = (1/2) \, (\delta m_h^2 / m_h) + \mathcal{O}(1/M_*^4) \qquad m_h : \text{ MSSM 2-loop LL value} \end{split}$$

 $\Rightarrow \text{ lower curve: } \Delta < 100: \quad m_h < 121 \text{ GeV}, \quad \delta m_h < 4 \text{ GeV}. \quad M_* = 8 \text{ TeV}. \text{ note: } \alpha_{j0}\tilde{m} \le 1/4$ $\Rightarrow \text{ top curve: } \Delta < 200: \quad m_h < 122 \text{ GeV}, \quad \delta m_h < 6 \text{ GeV}. \quad \pm 1 \text{ GeV} (\delta m_h) \leftrightarrow \mp 1 \text{ TeV} (\delta M_*).$ [16]

• d=6 effective operators: corrections to m_h , $(lpha_{jk} \sim 1/M_*^2)$

 $\rho - 1 = -(v^2/M_*^2) \left[\alpha_{10} \cos^4 \beta + \alpha_{20} \sin^4 \beta - \alpha_{30} \sin^2 \beta \cos^2 \beta \right] + \mathcal{O}(v^4/M_*^4), \quad M_* \sim 8 \text{ TeV} \quad [\text{Blum et al}]$ $\Rightarrow \text{ large } \tan \beta: \text{ larger } \alpha_{30}, \quad \alpha_{10} \text{ allowed } \Rightarrow \alpha_{30}, \quad \alpha_{40} \text{ largest SUSY correction to } m_h$

$$\mathcal{O}_3 \sim \alpha_{30} \int d^4\theta \ (H_1^{\dagger} e^{V_1} H_1) (H_2^{\dagger} e^{V_2} H_2), \ [T, U(1)] \ \mathcal{O}_4 \sim \alpha_{40} \int d^4\theta \ (H_2 H_1) (H_2 H_1)^{\dagger}, \ [S]$$

 \Rightarrow difficult to generate α_{30} , α_{40} with the "right" sign, by integrating massive T, U(1), S in ren model \Rightarrow neutralino mass corrections very small (LSP): $\sim \mu/M_* \sim$ few (≤ 1 to 2 GeV)!

$$\Rightarrow \Delta = 18$$
 (3 σ WMAP), $m_h = 115.9 \pm 2$ GeV $\Rightarrow m_h + \delta m_h = 119.9 \pm 2$ GeV, $\Delta' = \Delta \frac{m_h^2}{(m_h + \delta m_h)^2}$

• Conclusions:

• Hierarchy problem \leftrightarrow fine tuning. Test of SUSY.

 \Rightarrow min Δ + DM consistency, in constrained MSSM, but no LEP2 bound on m_h :

 $m_h = 114 \pm 2$ GeV, $\Delta \approx 9$, (no DM constraint). $m_h = 115.9 \pm 2$ GeV, $\Delta = 17.8$, (WMAP within 3σ).

 $\Rightarrow \Delta$ minimal at LEP2 bound! similar result if using Δ' (quadrature).

- \Rightarrow QCD does not like large m_h without fine-tuning cost: $\Delta < 100 \ (1000), \ m_h < 121 \ (126)$ GeV.
- Beyond MSSM Higgs with all effective operators of d=5, d=6 (new U(1)'s, S, D...):
- \Rightarrow d=5 operators: small $\Delta < 10$ allowed for $114.4 \le m_h \le 130$ GeV. Massive S? NMSSM with M_*S^2

 \Rightarrow d=6 operators:

Points of $\Delta < 100 \text{ (200)} \Rightarrow \text{SUSY } \delta m_h \leq 4 \text{ GeV (6 GeV)}$. $M_* = 8 \text{ TeV}$; ($\pm 1 \text{ GeV for } \mp 1 \text{ TeV}$) Extra U(1) or S ?

	SUG0	SUG1	SUG2	SUG3	SUG5
$\overline{m_0}$	1455	1508	2270	113	725
$m_{1/2}$	160	135	329	383	535
A_0	238	1492	30	-220	1138
aneta	22.5	22.5	35	15	50
μ	191	433	187	529	581
$m_{ ilde{g}}$	482	414	900	898	1252
$m_{ ilde{u}_L}$	1469	1509	2331	826	1315
$m_{{ ilde t}_1}$	876	831	1423	602	1000
$\overline{m_{\tilde{\chi}_1^+}}$	106	104	168	293	416
$m_{ ilde{\chi}_2^0}$	108	104	181	293	416
$m_{ ilde{\chi}_1^0}$	60	53	123	155	222
Δ	9	50	45	68	84
$\Omega_{ ilde{\chi}_1^0} h^2$	0.41	0.13	0.10	0.13	0.10
$10^4 \operatorname{BR}(b \to s\gamma)$	3.4	3.7	3.4	3.2	3.2
$10^9 \operatorname{BR}(B_s \to \mu \mu)$	3.0	2.9	2.9	3.4	1.7
$\delta a_{\mu} \times 10^{10}$	4.5	3.2	3.2	22.5	16.6

CMSSM parameters, sparticle masses (GeV) for regions 1,...5

[18]

[19]

• The favoured CMSSM spectrum of minimal $\Delta = 15$ consistent with Ωh^2 .

h^0	114.7	$\widetilde{\chi}_1^0$	79	$ \tilde{b}_1 $	1147	\tilde{u}_L	1444
H^0	1264	$\widetilde{\chi}_2^0$	142	\tilde{b}_2	1369	\tilde{u}_R	1446
H^{\pm}	1267	$\widetilde{\chi}_3^0$	255	$\tilde{ au}_1$	1328	\widetilde{d}_L	1448
A^0	1264	$ ilde{\chi}_4^0$	280	$\tilde{ au}_2$	1368	$ \tilde{d}_R $	1446
\widetilde{g}	549	$\tilde{\chi}_1^{\pm}$	142	$ \tilde{\mu}_L $	1406	\widetilde{s}_L	1448
$\widetilde{ u}_{ au}$	1366	$\tilde{\chi}_2^{\pm}$	280	$ \tilde{\mu}_R $	1406	\widetilde{s}_R	1446
$ ilde{ u}_{\mu}$	1404	$ $ \tilde{t}_1	873	\tilde{e}_L	1406	\widetilde{c}_L	1444
$\tilde{\nu}_e$	1404	$ $ \tilde{t}_2	1158	$ \tilde{e}_R $	1406	\tilde{c}_R	1446

(focus point region).

[20]

- Generating d=5 operators beyond the MSSM the Higgs sector:
- \mathcal{L}_1 ?: massive gauge singlet Σ or SU(2) triplet $(M_* \gg \mu)$:

$$\mathcal{L} \supset \int d^4\theta \, \Sigma^{\dagger} \Sigma + \int d^2\theta \, \left[\mu \, H_1 \cdot H_2 - M_* \, \Sigma^2 + \lambda \, \Sigma \, H_1 \, H_2 \right] + h.c. \quad \Rightarrow \quad \mathcal{L}_1 = \frac{1}{4M_*} \int d^2\theta \, \lambda^2 \, (H_1 \cdot H_2)^2 + h.c.$$

• \mathcal{L}_2 ?: massive Higgs doublets $H_{3,4}$ beyond MSSM $H_{1,2}$

$$\mathcal{L} = \int d^{4}\theta \left[\sum_{j=1,3} \left(H_{j}^{\dagger} e^{V_{1}} H_{j} + H_{j+1}^{\dagger} e^{V_{2}} H_{j+1} \right) + \left(\nu_{1} H_{1}^{\dagger} e^{V_{1}} H_{3} + \nu_{2} H_{2}^{\dagger} e^{V_{2}} H_{4} + h.c. \right) \right];$$

+ $\int d^{2}\theta \left[\mu H_{1} H_{2} + M_{*} H_{3} H_{4} \right] + h.c.;$ $-\frac{1}{4} \overline{D}^{2} \left[H_{3}^{\dagger} e^{V_{1}} \right] - \frac{1}{4} \overline{D}^{2} \left[\nu_{1} H_{1}^{\dagger} e^{V_{1}} \right] + M_{*} H_{4} = 0 \quad (H_{3})$
$$\Rightarrow \mathcal{L}_{2} = \int d^{4}\theta \left[\sum_{j=1,2} H_{j}^{\dagger} e^{V_{j}} H_{j} + \left(\frac{\nu_{1} \nu_{2}}{4 M_{*}} H_{2} e^{-V_{1}} D^{2} e^{V_{1}} H_{1} + h.c. \right) \right] + \left[\int d^{2}\theta \ \mu H_{1}. H_{2} + h.c. \right]$$

 $H_{2} e^{-V_{1}} D^{2} e^{V_{1}} H_{1} \sim D^{\alpha} \left[H_{2} e^{-V_{1}} \right] D_{\alpha} e^{V_{1}} H_{1}.$

• ? "onshell": $D^2 \left[e^{V_1} H_1 \right] = 4 \mu H_2^{\dagger} \Rightarrow$ wavefunc ren only. [Politzer, Georgi, Dixon, Taylor]

[21]

• Removing redundant operators by field redefinitions:

[Antoniadis, Dudas, DG, Tziveloglou]

$$\begin{aligned} \mathcal{L}_{1} &= \frac{1}{M_{*}} \int d^{2}\theta \,\,\zeta(S) \,(H_{2}.H_{1})^{2} + h.c., & [S,T] \\ \mathcal{L}_{2} &= \frac{1}{M_{*}} \int d^{4}\theta \,\,\Big\{ \,a(S,S^{\dagger}) D^{\alpha} \Big[b(S,S^{\dagger}) \,H_{2} \,e^{-V_{1}} \Big] D_{\alpha} \Big[c(S,S^{\dagger}) \,e^{V_{1}} \,H_{1} \Big] + h.c. \Big\}, & [D] \\ &\frac{1}{M_{*}} \,\zeta(S) = \zeta_{0} + \zeta_{1} \,m_{0} \,\theta\theta, & \zeta_{0}, \,\zeta_{1} \sim 1/M_{*}, \end{aligned}$$

 $a(S, S^{\dagger}) = a_0 + a_1 S + a_1^* S^{\dagger} + a_2 S S^{\dagger}, \qquad S = \theta \theta m_0, \text{ spurion}$

 $\Rightarrow \mathcal{L}_2$ removed by general non-linear, field redefinitions in \mathcal{L}_{MSSM}

$$H_1 \rightarrow H_1 - \frac{1}{M_*} \overline{D}^2 \left[\delta_1(S, S^{\dagger}) H_2^{\dagger} e^{V_2} (i\sigma_2) \right]^T$$

$$H_2 \rightarrow H_2 + \frac{1}{M_*} \overline{D}^2 \left[\delta_2(S, S^{\dagger}) H_1^{\dagger} e^{V_1} (i\sigma_2) \right]^T$$

 $\delta_1 = s_0 + s_1 S + s_2 S^{\dagger} + s_3 S S^{\dagger}, \qquad \delta_2 = s'_0 + s'_1 S + s'_2 S^{\dagger} + s'_3 S S^{\dagger}, \qquad F: U^c, D^c, E^c$ $\mathcal{L}_2 \text{ removed by suitably chosen } s_i, s'_i. \Rightarrow \text{ soft terms } \& \mu \text{-term redefinition:} \Rightarrow \text{ only } \mathcal{L}_1 \text{ left (d=5)}$ [22]

• Other physical consequences:

$$\mathcal{L}_{MSSM} \supset \int d^{2}\theta \left[H_{2} Q \lambda_{U}(S) U^{c} + Q \lambda_{D}(S) D^{c} H_{1} + L \lambda_{E}(S) E^{c} H_{1} + \mu(S) H_{1} H_{2} \right] + h.c.$$

$$H_{1} \rightarrow H_{1} - \frac{1}{M_{*}} \overline{D}^{2} \left[\delta_{1}(S, S^{\dagger}) H_{2}^{\dagger} e^{V_{2}} (i\sigma_{2}) \right]^{T}$$

$$H_{2} \rightarrow H_{2} + \frac{1}{M_{*}} \overline{D}^{2} \left[\delta_{2}(S, S^{\dagger}) H_{1}^{\dagger} e^{V_{1}} (i\sigma_{2}) \right]^{T}$$

$$\Rightarrow \mathcal{L}_{eff} \supset -\frac{1}{M_{*}} \int d^{4}\theta \left[H_{1}^{\dagger} e^{V_{1}} Q \lambda_{U}(S) U^{c} + H_{2}^{\dagger} e^{V_{2}} (Q \lambda_{D}(S) D^{c}) + H_{2}^{\dagger} e^{V_{2}} (L \lambda_{E}(S) E^{c}) + h.c. \right]$$

$$\Rightarrow \text{``wrong''-Higgs couplings:}$$

 $\frac{m_0}{M_*} (\lambda_U(0))_{ij} (h_1^{\dagger} q_{L\,i}) u_{R\,j}^c + \frac{m_0}{M_*} (\lambda_D(0))_{ij} (h_2^{\dagger} q_{L\,i}) d_{R\,j}^c + \frac{m_0}{M_*} (\lambda_E(0))_{ij} (h_2^{\dagger} l_{L\,i}) e_{R\,j}^c + h.c.,$

$$\Rightarrow m_b = \frac{v\cos\beta}{\sqrt{2}}\,\lambda_b\left(1 + \frac{\delta\lambda_b}{\lambda_b} + \frac{\Delta\lambda_b\tan\beta}{\lambda_b}\right)$$

"Wrong"-Higgs couplings also in MSSM at 1-loop: [Haber, Mason; Pokorski, Hall, Pierce, Katz]. Ψ_Q

