

(Positive) Ion and proton sources

Santo Gammino INFN-Laboratori Nazionali del Sud, Catania Big Facilities all over the world (FAIR-GSI, LHC, RIKEN RIBF, MSU FRIB) require intense beams of multiply charged ions

Intense proton beams are needed for the world's leading facility for research using neutrons, the European Spallation Source

Muon colliders and neutrino factories will be boosted by the availability of intense proton/H₂⁺ beams

Ion and proton sources

Covering the needs of scientific facilities

Since end of 80's continuously increasing performances

major technological challenges motivating the current R&D in the field

What they need

Components Maintainance

Interesting current opportunities for industry

What they can provide

Interesting future opportunities in Europe for industry

possible involvement in R&D collaborations

procurement contracts in the next 5 years

ION SOURCES MOTIVATIONS

INFN-LNS Cyclotron

□Low emittance.

☐ High stability and long-time operations without maintenance

Increase of Ion Sources performances enhances the Accelerators ones without main hardware modifications

Relevant ion sources

- 1) High current Proton sources (100 to 200 mA and norm. emittance 0.2-0.3 π mm.mrad)
- 2) High charge states ion sources (sub-mA or emA range, high versatility required for NP, high stability for medical or industrial applications
 - 3) Multiply charged ion sources (multi-mA) for consumer market and microelectronics

 Microwave discharge sources (MDIS) are suitable for 1), Electron Cyclotron Resonance ion

 sources (ECRIS) for 2), some new design is to be prepared for 3)

Other interesting types

- Laser ion sources (duty cycle, stability, reproducibility, emittance)
- RF negative sources for Spallation Sources etc (maintainance)
- Large area H- sources for Neutral Beam Injection (stability, maintainance)

Overcoming the current limits

Current ~ 100 mA for protons and other monocharged species will be required in the next years by different projects, mA for multiply charged ion beams

$$I \sim n_e/\tau_i$$

Larger plasma density is required in ion sources' chamber

Strategy

High charge states (ECRIS):

high electron density, high plasma confinement time

→ high frequency, high magnetic field

High current (MDIS):

high electron density (overdense plasmas), low plasma confinement time → 2.45 GHz frequency, low magnetic field

$$I_{ext} \propto \frac{n_e}{\tau_i}$$
; $< q > \propto n_e * \tau_i$

ECR Ion Sources Setup

el. dens. 10¹²-10¹⁴ cm⁻³ el. temperature 0.01-10 keV

The 70's&80's: First Generation ECRIS

MINIMAFIOS – ECREVIS– LBL ECR …

ECREVIS

The First ECR beam in A cyclotron was achieved at Louvain La Neuve (B)

First generation ECRIS performances

- · International competition for results was already there!
- · First International Workshop on Ion sources in Berkeley

Typical beam performance of G1:

 \sim 100 μ A Ar⁸⁺

~100 µA O6+

SERSE ion source

Beam	І(еµА)	Beam	І(еµА)	Beam	І(еµА)
O ⁶⁺	540	Kr ²²⁺	66	Au ³⁰⁺	20
O ⁷⁺	208	Kr ²⁵⁺	35	Au ³¹⁺	17
O ₈₊	62	Kr ²⁷⁺	7.8	Au ³²⁺	14
Ar ¹²⁺	200	Kr ²⁹⁺	1.4	Au ³³⁺	12
Ar ¹⁴⁺	84	Kr ³¹⁺	0.2	Au ³⁴⁺	8
Ar ¹⁶⁺	21	Xe ²⁷⁺	78	Au ³⁵⁺	5.5
Ar ¹⁷⁺	2.6	Xe ³⁰⁺	38.5	Au ³⁶⁺	2.5
Ar ¹⁸⁺	0.4	Xe ³¹⁺	23.5	Au ³⁸⁺	1.1
Kr ¹⁷⁺	160	Xe ³³⁺	9.1	Au ³⁹⁺	0.7
Kr ¹⁸⁺	137	Xe ³⁴⁺	5.2	Au ⁴⁰⁺	0.5
Kr ¹⁹⁺	107	Xe ³⁶⁺	2	Au ⁴¹⁺	0.35
Kr ²⁰⁺	74	Xe ³⁸⁺	0.9	Au ⁴²⁺	0.03

Ref.: S. Gammino, G. Ciavola, L. Celona et al., Rev. Sci. Instr. 70(9), (1999) 3577

optimized for Xe ²⁰⁺ 18 GHz 0,1 18 GHz 0,08 Intensity (emA) 0,06 0,04 0,02 Magnetic field (a.u.) 0,2 optimized for Xe ²⁰⁺ 28 GHz 28 GHz 0,1 0,05 Magnetic field (a.u.)

SERSE 28 GHz

Ref.: S. Gammino, G. Ciavola, L. Celona, D.Hitz, A. Girard, G. Melin, Rev. Sci. Instr. 72(11), (2001) 4090

MAIN Issues:

- Beam Transport losses
- Plasma chamber cooling
- Increase of X-ray heat load in the cryostat

Third generation ECRIS

- The new high performance ECR ion sources are optimized for ECR frequency 18 <f< 28 GHz
- The high magnetic field intensity required to confine the plasma (~2-4×B_{ECR}~2-4) makes the
 use of copper coil technology unreasonable in term of electrical power consumption (2T
 hexapole in Cu technology=> 3-4 MW electrical power).
- New ECRIS are preferably fully superconducting, with a large plasma volume to produce very high charge states for Cyclotrons or High intensity LINAC
- The beam current dramatically increases when the source is operated at higher frequency, and new technical challenges have arisen....

^{*}Superconducting ECRIS

VENUS: The first 3rd Generation ECRIS

VENUS

B_{max} on axis: 4 T, B_r radial: 2.2 T, operating at 28+18 GHz First plasma in 2002

	≤2015	> 2015
16 O 6+	2850	4750
O7+	850	1900
40 Ar 12+	860	1060
Ar^{16+}	270	525
Ar^{17+}	37	120
Ar^{18+}	1	4
78 Kr 18+		⁸⁴ Kr 770
Kr ²³⁺	88	420
Kr^{28+}	25	100
Kr ³²⁺		7
129Xe ²⁷⁺	400	705
Xe^{38+}	7	26
Xe^{45+}		0.8
⁹⁷ Au ⁴⁷⁺	4	197 Au 51+ 5
Au^{52+}	0.8	4.7
Au^{58+}		0.6
209Bi45+	18	63
Bi50+	5.3	27
Bi55+		7.2
Bi ⁵⁹⁺		0.7
238U33+	450	
U36+	220	

Time evolution of the beam intensity

$$I_i^q \sim \frac{1 \, n_i^q q e V_p}{2 \, \tau_i^q} \quad \longrightarrow \quad I_i^q \propto n_e V_p$$

$$\frac{n_e^2 \langle q \rangle}{\sqrt{T_e}} \sim \frac{5.2 \times 10^3}{e} \cdot \frac{P_{rf}}{V_p} \longrightarrow n_e \propto k_q \sqrt{P_{rf} T V_p}$$

G. Melin, et al., Journal of Applied Physics 86, 4772 (1999)

High performance ECR ion source:

- High intensity= high power + big plasma volume
- Higher charge state= high power density + bigger volume (confinement)

Best VENUS Oxygen Charge state Distributions (CSDs) on <*q>*

ECR Oxygen CSDs peaked at O^{7+} for the first time Average charge $<q>\sim6.5$

VENUS Oxygen CSDs peaked at O⁷⁺ and O⁶⁺ Average charge <q> ~ 5.8

A full exploration will be carried out in the future

- ❖ Peaking at O⁷⁺ in oxygen CSD is a good step forward for VENUS and ECRIS technology
- * A complexly-shaped aluminum insert could benefit the production of higher ion charge states
- ❖ A symmetric plasma chamber is not a necessity for the 3rd and future generation of ECRIS

86 Kr²⁸⁺⁼ 100 eµA, P_{rf}= 6.0 kW, Power density=1.16 kW/I

High Intensity HCI Beam Needs: Production

FECR: a 4th G ECRIS

Specs.	Unit	3 rd G ECRIS	4 th G ECRIS	FECR
frequency	GHz	24-28	40~56	45
Operational RF Power	kW	4~10	10~40	20
$\mathrm{B}_{\mathrm{ECR}}$	T	0.86~1.0	1.4~2.0	1.6
${ m B}_{ m rad}$	T	1.8~2.2	2.8~4.0	≥3.2
$\mathrm{B}_{\mathrm{inj}}$	T	3.4~4.0	5.6~8.0	≥6.4
${ m B}_{ m min}$	T	0.5~0.7	/	0.5~1.1
$\mathrm{B}_{\mathrm{ext}}$	T	1.8~2.2	3.0~4.5	≥3.4
Plasma Chamber ID	mm	100~150	>100	≥140
Mirror Length	mm	420~500	≥500	500
Cooling Capacity@4.2 K	W	0~6.0	>10.0	≥10.0

FECR Progresses: Magnet

Coldmass Structure

Magnet Structure

FECR Progresses: Microwave System test with SECRAL-II

45 GHz Microwave System for FECR

- 45 GHz/20 kW microwave transmission system based on Quasi-optical design
- First 45 GHz ECR plasma with SECRAL-II ion source
- Efficient transmission and coupling demonstrated

J. W. Guo, et al., AIP Conference Proceedings **2011**, 090001 (2018)

Status of MARS-D ECR

Ion Source

Mixed Axial and Radial field System

Tri-segmented Solenoid

Straight Bar

Combining a set of smaller solenoids with the closed-loop-coil allows for maximum fields of 5.7 T (axis) and 3.1 T (hexagonal chamber) to extend the NbTi conductor into 45 GHz ECR operations

These fields are good for a 45 GHz ECR ion source

C4) Improving Ion Beam services (ERIBS)

Participants: JYU (coordination),
ATOMKI, CNRS (IPHC, LPSC), GANIL,
GSI, INFN (LNL-LNS), UMCG.
ERIBS (European Research
Infrastructure - Beam Services) aims at
providing high-level ion beam services
for the EURO-LABS research
infrastructures by focusing on
improvements in two key categories:

- a) ion beam variety and production efficiency;
- b) short and long-term ion beam stability.

INFN

Project to design and build a second injector at SPIRAL2 with A/Q=7 Budget obtained by ANR/France in 2021 - Planning : 2021-2028

Istituto Nazionale di Fisica Nucleare LABORATORI NAZIONALI DEL SUD

Beams of reference for ions source and plateform design

- 28 GHz + 18GHz ion source on a HV platform ~70 kV
 - Preliminary design study under progress
 - Project team completed: LPSC, GANIL, CEA/DACM

New ECRIS for the upgraded CS- SC-AISHa

The AISHa ion source has been expressly conceived and realized for actual and future hadrontherapy facility (e.g.:HITRI+). It has a strong limitation on a radial field (1.28T instead of 1.55T of SERSE) affecting HCI production.

However the permanent magnet hexapole may be replaced by a superconducting structure with a minor changes on the solenoid coils for axial confinement (may be decreased to 3). Increase of extraction voltage is also mandatory.

Radial field	1.9 T
Axial field	3.5 T - 0.5 T – 2.2 T
Operating frequencies	24 GHz – 18 GHz
Operating power	5 + 5 kW (max)
Extraction voltage	60 kV (max)
Chamber diameter / length	Ø 130 mm / 600 mm
LHe	Free
Warm bore diameter	140 mm
Source weight	2100 kg

Evidence of Frequency Tuning Effect (FTE) on the SUPERNANOGAN source

Transmission of a cyclotron or a RFQ changes significantly when the frequency of the source is slightly changed.

Frequency tuning on the CAPRICE source at GSI

[L. Celona, et al. Observations of the frequency tuning effect in the 14 GHz CAPRICE ion source. Rev. Sci. Instrum., Feb. 2008. vol. 79, no. 2, p. 023 305.]

Frames of the extracted beam for different frequencies

"three cusp" shape of the extracted beam according to the magnetic structure

Well focused and high brightness beam

Broadened, low brightness beam

The Frequency Tuning strongly affects also the beam shape and brightness

INFN

Fluctuations of electron energy during the frequency tuning

Istituto Nazionale di Fisica Nuclear S. Gammino et al, IEEE Trans. Plasma Sci., 2008]

3D collisionless Monte Carlo simulations about ECR-heating of electrons crossing many times the resonance zone in a min-B configuration.

Exciting a mode is not enough: standing wave structure is dominant!

Istituto Nazionale di Fisica Nuclear

In some conditions slight variations of L are critical for hard-X rays generation (exp. with CAESAR)

Comparison of the X-ray spectra obtained with slightly different B profiles

By changing the characteristic length of the mirror trap, L, of just 4mm, we obtained a completely different X-ray spectrum.

	L [mm]	l [mm]	Wb [keV]	Dνν [a.u.]	T ^{spec} [keV]	Ef [keV]
B1	60	30	300	100	35	300
B2	64	34	350	105	100	530

INSpIRIT

Revamping of critical components in order to speed some normal machine operations:

- Revamping of critical components to increase machine reliability
- Upgrade of the radiobiology laboratory
- AISHa source for Helium, Lithium, Oxygen and Iron for new clinical protocols (He, O, Li) and biological/material experiments for space radiation research.

POR FESR 2014-2020 / INNOVAZIONE E COMPETITIVITÀ

Radial field	1.3 T
Axial field	2.7 T - 0.4 T - 1.6 T
Operating frequencies	18 GHz – 21 GHz
Operating power	1.5 + 1.5 kW (max)
Extraction voltage	40 kV (max)
Chamber diameter / length	Ø 92 mm / 360 mm
LHe	Free
Warm bore diameter	274 mm
Source weight	1400 kg

AISHa@LNS

low maintenance time

Charge	Beam	$oldsymbol{arepsilon}_{rms.norm}$
state	intensity	$[\pi \cdot mm \cdot$
	$[e\mu A]$	mrad]
16 O 6+	1400	0.2198
16 O 6+	225	0.115
¹⁶ O ⁷⁺	350	0.247
¹² C ⁴⁺	650	0.272
¹² C ⁴⁺	150	0.222
¹² C ⁵⁺	165	
⁴⁰ Ar ¹¹⁺	155	0.201
⁴⁰ Ar ¹²⁺	140	0.201
He ²⁺	5400	0.418
He ²⁺	700	0.245

AISHa Performances

Q/M

AISHa @ CNAO

Helium, Lithium, Oxygen and Iron for new clinical protocols and biological/material experiments for space radiation research

Source and ancillary equipment are being preassembled in INFN-PV.

Commissioning is planned to start in Q4-2022 and will envisage night shifts

Microwave Discharge Ion Sources MIDAS 1 and 2 (1993-97)

TRIPS-VIS

TRIPS

VIS

Performance	Value
Beam energy	80 Kev
Proton beam current	55 mA
Proton fraction	≈80%
RF frequency	2.45 GHz
RF power	Up to 1 kW
Axial magnetic field	875-1000 G
Duty factor	100 % (DC)
Extraction aperture	6 mm
Reliability	99.8% @ 35 mA
Transverse emittance (σ)	0.07
	pi.mm.mrad
	@ 35 mA
Start-up after maintenance	32 hours

IFMIF-EVEDA

ESS high intensity proton source

2011 Start of the design at LNS
2015 Start of the construction at LNS
12/09/2017 ESS visit for requirement verification
17/11/2017 End of the commissioning at LNS
01/02/2018 Delivered and assembled in Lund

ESS high intensity proton source

PS-ESS was fully commissioned at LNS and performance were validated by ESS personnel

Requirement	Value	Measurement done for configurations that satisfy the ESS stability requirements	Comments
Total beam current	>90 mA	40 - 140 mA	J
Nominal proton beam current	74 mA	40 - 105 mA	J
Proton beam current range	67-74 mA	40 - 105 mA	J
Proton fraction	>75%	Up to 85%	J
Pulse length	6 ms	6 ms	J
Pulse flat top	3 ms	3 ms	J
Flat top stability	±2 %	< ±2 % up to 1.5%	J
Pulse to pulse stability	±3.5 %	< ±3.5 % up to 3%	J
Repetition rate	14 Hz	14 Hz	J
Beam energy	75±5 keV	75 keV	J
Energy adjustment	±0.01 keV	±0.01 keV	J
Transverse emittance (99%)	1.8 pi.mm.mrad	1.06 pi.mm.mrad @ 82 mA	J
Beam divergence (99%)	<80 mrad	50 mrad @ 82 mA	J
Start-up after source maintenance	32 hours	32 hours	J

Second source with second part of the commissioning was not needed

Goal 1: In-depth study of the largest dataset ever collected on this type of source (55000 source configurations)

Goal 2: Ion source simulation tool development (from plasma formation to beam extract)

Istituto Nazionale di Fisica Nucleare

The future challenges

- Higher charge states required for heavy ions;
- Higher intensities are required for q/m > 0.3;
- Better brightness;
- Improved stability (1% or better);
- Metallic species reproducibility;
- High absolute ionization efficiency for rare elements;
- Improvements on magnets and generator technology;
- New heating schemes?

Co-innovation

- Partnerships will be mandatory for high quality mechanical manufacturing;
- Specific procurements will be more and more demanding, i.e. microwaves generators and couplers, high voltage power supply, cryogenics, magnets production, vacuum setups, computer control (unmanned operation is yet available for many sources);
- Developments of specific projects according to the industrial needs is welcome (e.g. for microelectronics and for surface treatments);
- Stability and reproducibility are still to be improved and an industrial management may be helpful, especially for metallic species;
- Medical facilities are expected to need more ion sources and higher performances
- High current proton beams and light ion beams will be more and more useful for applications and the issue of minimization of construction costs needs coinnovation