

🖏 25 YEARS 💉

LATEST DEVELOPMENTS IN COATED CONDUCTORS WILL REVOLUTIONIZE MAGNET TECHNOLOGY

Sara Landvogt, Werner Prusseit, Anis Smara THEVA Dünnschichttechnik GmbH

CERN iFAST 2022 03.05.2022

THEV/A

THEVA AT A GLANCE

Company: THEVA GmbH, HQ in Ismaning, Germany, established 1996

Team: 50 FTE (mainly R&D engineers and production team)

Product portfolio

HTS wire THEVA Pro-Line

Inspection tools Tapestar™-XL

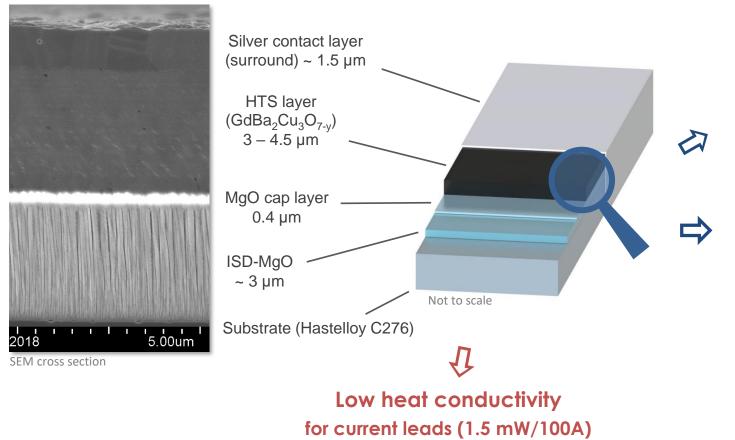
Value proposition

- Robust, high performance products
- Reliable wire supply
- Expertise and engineering support

© THEVA Dünnschichttechnik GmbH 2022

Main applications

- HTS cables and bus bars for high current
- Current leads (with low heat input)
- Magnets: high field, fusion, industry



THEVA PRO-LINE HTS WIRE AND LATEST IMPROVEMENTS

Basic wire architecture

Performance improvements

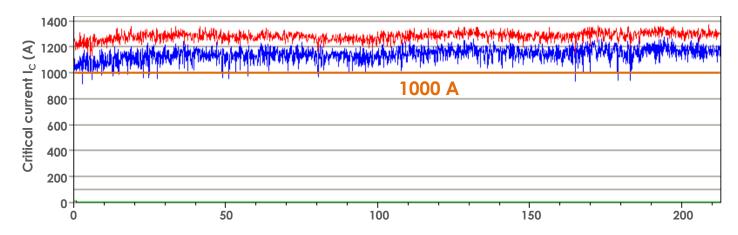
High performance (HP) wire

Increased HTS thickness $3 \ \mu m \rightarrow 4.5 \ \mu m$ I_C (77K,sf) 700 A \rightarrow 900+ A

Artificial pinning (AP) formula

BaHfO₃ nano-particles Randomly dispersed – no columns I_C (20K,20T) > 500 A/cm

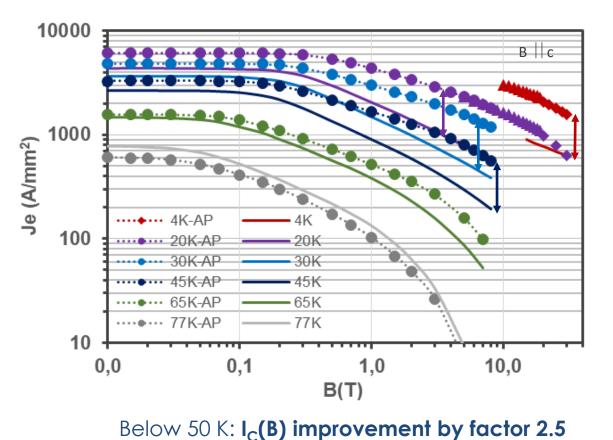
HIGH - PERFORMANCE HTS WIRE


Regular production wire

800 Critical current I_{c} (A) Width: 12 mm 700 700 A 600 3, 4, 6 mm available by Laser slitting 500 400 $I_{C.min}$ (77K, s.f.) = 500 A - 700 A 300 200 Piece length: 100 m - 200 malso with AP-formula 100 0 100 200 300 350 50 150 250 400 450 Position (m)

900

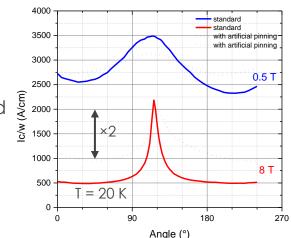
High performance wire


Enhanced HTS thickness (4.5 μ m) I_{C,min} (77K, s.f.) = 750 A - 1000 A Piece length: 50 m - 200 m

MAGNETIC FIELD PERFORMANCE OF AP-REBCO WIRE

Field dependence of ReBCO-wire (+ BaHfO₃)

THEVA Pro-Line AP wire performance

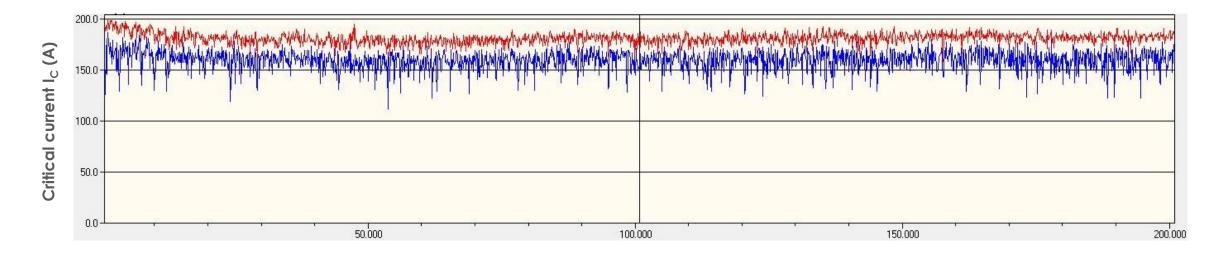

Current density for B || c of total 60 µm thick tape (40 µm substrate and 5 µm surround Cu coating)

- 10 T: 3000 A/mm²
- 20 T: 2000 A/mm²
 @ 4.2 K
- 30 T: 1550 A/mm²

@ 20 K, 20 T: 800 - 900 A/mm²

Reduced anisotropy

- AP randomly dispersed
- no columnar growth



© THEVA Dünnschichttechnik GmbH 2022

HF data from LNCMI Grenoble, Univ. Geneva, RRI Wellington

SERIES PRODUCTION OF AP-REBCO WIRE

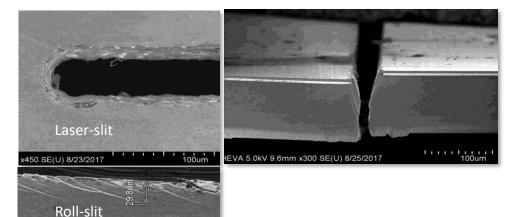
Stable Ic over length > 200 m (4 mm width, after copper coating)

Full length high resolution Tapestar scan of Ic @ 77 K, s.f. as a quality indicator

 \rightarrow with our Tapestar XL-HF, full length scan @ 77K, 1 T possible (down to 68 K with subcooling option)

THEV/A

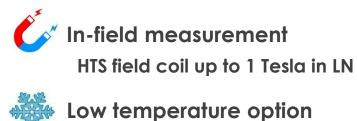
LASER-SLITTING


- Cost aspect: slitting can destroy substantial value
- Edge defects are critical for high field applications

High yield Laser tape slitting

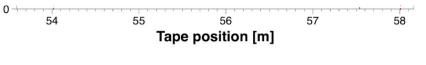
Laser Slitting benefits

- High accuracy, narrow tolerances
- No waste material
- No I_{C} reduction ($I_{C-12mm} = 4 \times I_{C-3mm}$)
- No cracks or defects induced
- Clean, straight edge no burr
- Narrow tapes essential to lower AC losses



QUALITY CONTROL: TAPESTAR[™] - ENHANCED FUNCTIONALITY

Enhanced operating range



Subcooling LN down to 68 K

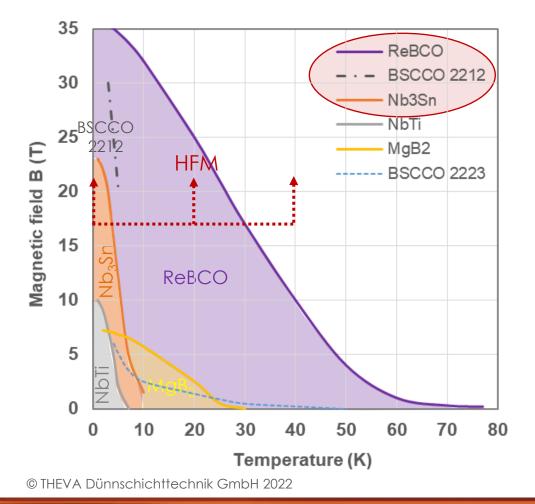
Yield forecast for (Laser) slitting

Algorithm using full 2D Tapestar data of wide tape analyzing existing defects and predicting slitting yield

black: I_c-simulation for 3 mm slitting
 green: measured I_c after 3 mm slitting

Pros & Cons

SUPERCONDUCTING WIRE MATERIALS – A COMPARISON


How does ReBCO compare to classical superconductor wire ?

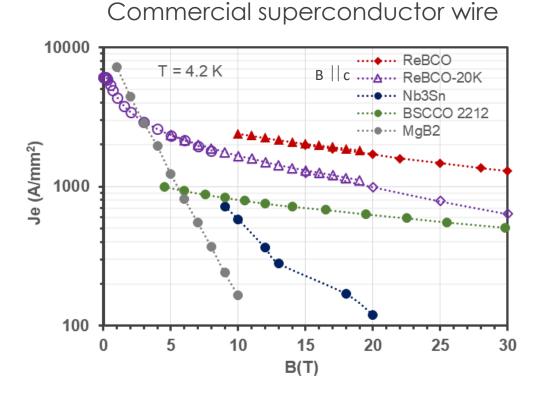
LTS, MgB₂ or BSCCO produced by classical, metallurgical PIT – route Modifications tricky Round, filamentary wire, easy twisting and flexible handling and packaging Design freedom Some materials (Nb₃Sn, BSCCO 2212) require "wind and react" processing Adversity, risk **ReBCO** "wires" are coated tapes (coated conductors) \geq Additive fabrication: coatings are applied layer by layer by PVD Growth can be controlled and manipulated (e.g. adding artificial pinning) Easy modification 12 mm production width – Laser-slit to custom-width (3 – 12 mm) Flexible adaptation Flexible adaptation Customized electrical stabilization applied afterwards Limited freedom Tape geometry, no filaments, only stacking possible Strength adjustable Mechanical strength determined by substrate choice (mostly HC276)

MATERIAL CHOICE FOR HIGH FIELD MAGNETS (HFM)

Practical operation range of superconductors

For HFM the choice has considerably increased

- Classical, well-established Nb₃Sn (OST/BEST), W&R
- BSCCO 2212 experimental material, high pressure processing, W&R, single source, cost ?


> ReBCO (2G HTS)

- Extremely wide operation range (B & T)
- High pinning forces & H_{irr}
- Sprouting industrial (volume) production
 Perspective: commodity product, cost decline
- RE/NM-content negligible not a cost factor

W&R = wind & react material RE = rare earth, NM = noble metal

SUPERCONDUCTORS FOR EXTREMELY HIGH FIELD MAGNETS

MgB₂: M. Tomsic, Hypertech 2015 BSCCO: Z. Melhem, OST @ ASC 2020 Nb₃Sn: Supercon 2020

Artificial pinning (AP) ReBCO wire

- Giant progress made in ReBCO wire recently
- All suppliers offer special AP-material
- Extremely high pinning forces

1.2 TN/m³ @ 4 K, 18 T *

- Broad HF operating range (up to 20 K)
- Quench resilient

Beyond 18 T the future belongs to ReBCO wire

* T. Yoshida et al., Fujikura Technical Review 2017

SUMMARY

ReBCO – wire is ...

- > a novel product that differs in many ways from classical superconductors
- > offering new perspectives for robust magnets even at extremely high fields
 - HTS systems at 20 K are more benign compared to 4 K LTS systems (e.g. heat capacity)
 - extremely high pinning forces
 - large operation window
 - quench-resilient \rightarrow stable operation
- > Ready to use material (no W&R) with high resolution inspection data available

> Attractive cost perspective

- Raw material < 20% of product cost</p>
- HTS content of wire < 5%</p>
- Production cost scale with volume: 10× production volume ⇒ ½× cost

2G HTS wire will revolutionize high field magnet design

THEVA P