Inverse Stability Problem in Beam Dynamics

Alexey Burov
Fermilab

HB Workshop, 10/10/2023 CERN

Inverse Stability Problem in Beam Dynamics

PHYSICAL REVIEW ACCELERATORS AND BEAMS

Highlights Recent Accepted Special Editions Authors Referees Sponsors

Open Access

Inverse stability problem in beam dynamics
Alexey Burov
Phys. Rev. Accel. Beams 26, 082801 - Published 17 August 2023

HB Workshop, 10/10/2023 CERN

Direct and Inverse Problems

Direct and Inverse Problems

How a simplest unified description
for gravity and inertia could look like?

1907-1915

1879-1955

Direct and Inverse Problems

Inverse

How a simplest unified description
for gravity and inertia could look like?

1907-1915

1879-1955

Direct and Inverse Problems

Inverse

How a simplest unified description
for gravity and inertia could look like?

1907-1915

1879-1955

What could be a fate of the Universe, according to GR?

1922-1924

Direct and Inverse Problems

Inverse

How a simplest unified description
for gravity and inertia could look like?

1907-1915

1879-1955

Direct

What could be a fate of the Universe, according to GR?

1922-1924

Harmonic oscillators with an antidamper

$$
\dot{a}_{k}+i \Delta \omega_{k} a_{k}=-i g \bar{a}
$$

Harmonic oscillators with antidamper

$$
\begin{gathered}
\dot{a}_{k}+i \Delta \omega_{k} a_{k}=-i g \bar{a} \\
a_{k} \propto \exp (-i \nu t)
\end{gathered}
$$

Harmonic oscillators with antidamper

$$
\dot{a}_{k}+i \Delta \omega_{k} a_{k}=-i g \bar{a}
$$

$$
a_{k} \propto \exp (-i \nu t)
$$

$$
a_{k}=\frac{g}{\nu-\Delta \omega_{k}} \bar{a}
$$

Harmonic oscillators with antidamper

Harmonic oscillators with antidamper

$$
\dot{a}_{k}+i \Delta \omega_{k} a_{k}=-i g \bar{a}
$$

$$
a_{k} \propto \exp (-i \nu t)
$$

$$
a_{k}=\frac{g}{\nu-\Delta \omega_{k}} \bar{a}
$$

$$
\frac{g}{N} \sum_{k} \frac{1}{\nu-\Delta \omega_{k}}=1
$$

$$
-\left[\iint \mathrm{d} J_{x} \mathrm{~d} J_{y} \frac{J_{x} \frac{\partial F}{\partial J_{x}}}{\nu-\Delta \omega\left(J_{x}, J_{y}\right)+i o}\right]^{-1}=g
$$

1D, octupoles, Gaussian

alien nonlinearity
$\Delta \omega\left(J_{x}, J_{y}\right)=k J_{y}$

$$
\left[\int \mathrm{d} J_{y} \frac{F_{y}\left(J_{y}\right)}{\nu-J_{y}+i o}\right]^{-1}=g
$$

1D, octupoles, Gaussian

alien nonlinearity
$\Delta \omega\left(J_{x}, J_{y}\right)=k J_{y}$
\longmapsto

$$
\left[\int \mathrm{d} J_{y} \frac{F_{y}\left(J_{y}\right)}{\nu-J_{y}+i o}\right]^{-1}=g
$$

own nonlinearity
$\Delta \omega\left(J_{x}, J_{y}\right)=k J_{x} \longleftrightarrow$

$$
F_{y} \rightarrow-J_{x} \frac{\partial F_{x}}{\partial J_{x}}
$$

Hereward rule

1D, octupoles, Gaussian

$$
\Delta \omega\left(J_{x}, J_{y}\right)=k J_{y} \stackrel{k=1}{\square}
$$

$$
\left[\int \mathrm{d} J_{y} \frac{F_{y}\left(J_{y}\right)}{\nu-J_{y}+i o}\right]^{-1}=g
$$

own nonlinearity
$\Delta \omega\left(J_{x}, J_{y}\right)=k J_{x} \square$

$$
F_{y} \rightarrow-J_{x} \frac{\partial F_{x}}{\partial J_{x}}
$$

Direct and Inverse Stability Problems

Direct problem: $F(J) \rightarrow V\left(g^{\prime}\right)$
Inverse problem: $V\left(g^{\prime}\right) \rightarrow F(J)$

Direct and Inverse Stability Problems

Direct problem: $F(J) \rightarrow V\left(g^{\prime}\right)$
Inverse problem: $V\left(g^{\prime}\right) \rightarrow F(J)$; a pair of nonlinear integral equations.

```
PHYSICAL REVIEW LETTERS 126, 164801 (2021)
estion
Proof-of-Principle Direct Measurement of Landau Damping Strength at the Large Hadron Collider with an Antidamper
S. A. Antipov©,\(^{1,2, *}\) D. Amorim \(\odot,{ }^{1,3}\) N. Biancacci, \({ }^{1}\) X. Buffat, \({ }^{1}\) E. Métral \({ }^{\circ},^{1}\)

\section*{Tails: easy}
\[
\int \mathrm{d} J_{y} \frac{F_{y}\left(J_{y}\right)}{\nu-J_{y}+i o} \simeq \frac{1}{\nu}-\pi i F_{y}(\nu)
\]
\[
\Re g \simeq \nu ; \Im g \simeq \pi \nu^{2} F_{y}(\nu)
\]

\section*{\(F_{y}(\nu) \simeq \frac{\Im g(\nu)}{\pi \nu^{2}}\)}

\section*{Core: fitting approach}

\section*{\(A=\Delta \Re g_{\text {FWHM }} / \max \Im g \quad\) aspect ratio for \(V\)}

\[
n J_{0}>0
\]



FIG. 2. Aspect ratio \(A\) of 1D stability diagram, the alien case, versus the power \(n\) of the binomial distribution function \(\propto\left(1-J / J_{0}\right)^{n}, n J_{0}>0\). Note that \(\lim _{n \rightarrow-2} A=\infty\). The dashed line marks the asymptote, \(F(J)=J_{0}^{-1} e^{-J / J_{0}}, J_{0}>0\).

FIG. 3. The same as Fig. 2 for the own case. Here \(\lim _{n \rightarrow-2} A=\infty\) as well.

\section*{Core: iterative 4-leg walk}
1. Compute integrals with your initial guess \(F(J)\);
2. With that, make tables \(g^{\prime}(v) ; g^{\prime \prime}(v)\);
3. Update your guess as \(F(v)=-\pi^{-1} \widetilde{\Im} g^{-1}(v)\);
4. Normalize the updated \(F(J)\) and go back to 1.

\section*{Convergency Limitation}


FIG. 4. An example of the iteration convergence for the alien case, \(\nu_{\min }=0.7\). Here "true" means the distribution responsible for the "measured diagram"; "0" means the initial guess of the distribution, while " 1 " and " 2 " stand for the output distributions after the first and second four-leg moves of the algorithm. The latter is clearly very fast, but it becomes unstable at small actions, \(J \lesssim 0.5\), for a slightly smaller border \(\nu_{\text {min }}\).


FIG. 7. Vaccaro diagrams calculated for a Gaussian bunch at the LHC top energy for 550A of the octupole current, yielding \(k_{x}=1.0 \cdot 10^{-4}, k_{y}=0.7 \cdot 10^{-4}\) for the normalized rms emittances \(2.5 \mathrm{~mm} \cdot \mathrm{mrad}\); for more details see Ref. [5]. Gaussian normalized rms emittances for each curve are shown.

Positive tune shifts mostly correspond to \(x\), negative - to \(y\). The problem is effectively factorized, reducing to 1D case.

\section*{Chromaticity effects}

If \(|g| \ll \omega_{s}\) then the gain is distributed between the headtail modes:
\[
g \rightarrow g_{l}=g K_{l}(\zeta) \quad \text { with } \zeta=\text { rms HT phase }
\]
```

K
K

```
\(\sum_{l=-\infty}^{\infty} K_{l}=1\)

If \(|g| \gg \omega_{S},|\zeta| \omega_{S}, \quad\) the single rigid-bunch mode is formed, taking the entire gain.

Many thanke!```

