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Loss of Landau damping



Loss of Landau damping (LLD)

Long-lasting oscillations were observed Longitudinal particle oscillations can
In SPS, RHIC, Tevatron, LHC, ... be described as van Kampen modes*
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*Y. H. Chin, K. Satoh, and K. Yokoya, Instability of a bunched beam with synchrotron frequency spread, 1983,
and A. Burov, Van Kampen modes for bunch longitudinal motion, 2010 4



Lebedev equation*

A system of equations for line-density harmonics 1, for coherent mode Q

Beam and RF parameters Impedance at kw, + ()
\ /
y Z(2) :
z [5""‘ + @ 1.(Q) = z My (DI (Q) = 0
=—00 T k=—o0
Beam transfer matrix k=w/w,
N, — number of particles
q — charge
_ o _ _ wy — revolution frequency
— The mode (1 is a solution if the determinant is zero, det M = 0 w,¢ — If frequency
V, — rf voltage

*A. N. Lebedev, Coherent synchrotron oscillations in the presence of a space charge, 1968



Approximate analytic solution

det M = det|[] + eX(&)] = det(exp{In[] + X (&)]}) =\exp(tr{ln[1 + £X(e)]})
=1+ etr[X(0)] + 0(£?) det(exp A) = exp(trd)

- 00 —1
The LLD threshold for dipole mode: . . ~ Yo z Gkk(Q)Zk(Q)]

W k
q Wyt e
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« Reactive impedance Z, /k = ilmZ /k = const. _1.0- /\/WWVA //’/ -, jg
 Beam above transition in single rf; Q = w,(0) E o n=0 _-""sum :
e p=20 .-~ 500 =
 Short bunch approximation ¢, = ws7/2 K 7 & 097 = K
< el -250 2
« Binomial distribution A(¢) o [1 — ¢? /P2 ]+1/2 > et A
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— Elements G,,; saturate for k - o kb

— LLD threshold is zero for commonly used inductive impedance ImZ /k = const



LLD threshold

One needs to introduce a cutoff frequency Function x,(y) = yll _ R, (%
fc = k.fo and then
10
. m Voo N
P 32qhweeu(u + 1) x, (kepm/M)IMZ /K o I
3
TT Vocpé’] = 61 Hofmann-Pedersen
For Niip = S
Je = o Nup 32qweep(u + 1) k. ImZ/k 5 4-
F
so that Ny p « 1/f. and ¢> — ¢ 5
_—
— Nyp1p based on Sacherer* and Hofmann- _—] , | |
Pedersen** formalisms (x = 0.5) is reproduced 0 2 4k , /h6

for fo = 1/t (kcpm = 1)

*F.J. Sacherer, Methods for computing bunched-beam instabilities, 1972
**A, Hofmann and F. Pedersen, Bunches with local elliptic energy distributions, 1979
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LLD threshold: numerical approaches

(1) The Oide-Yokoya discretization method (O-Y)*: Originally applied for analysis of single-bunch
instabilities and later for LLD studies**

(2) Direct solution of the Lebedev equation (L): recently implemented in code MELODY ***
x 1011

207 m L, fo/fee =10 102 - —  futTean = 0.6, analytic
ZQ O-Y, f./fir = 10 ZQ“ " fremran = 0.4, analytic
Example for LHC: € 1.5 _ n = m  fuTran = 0.6, MELODY
o [ L, fc/frf 20 &
450 GeV, u =2 2 = feeran = 0.4, MELODY
ev, U= <, 2 O-Y, f./fut = 20 2 10 5
truncated inductive 2 10 - 3
. _ o L
impedance with % ks
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*K. Oide and K. Yokoya, Longitudinal single bunch instability in electron storage rings, 1990
**A. Burov, Van Kampen modes for bunch longitudinal motion, 2010
***|K, Matrix Equations for LOngitudinal beam DYnamics



LLD for effective impedance

~1
k( ) All work with k., = ke & ImZ /k > (ImZ /k) o5t
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*S. Nese, Effective impedance for the threshold of loss of Landau damping, 2021 9



Beam measurements of LLD

LLD was the first and only intensity effect observed in the LHC in the longitudinal plane*

Measured parameters of bunches with LLD LLD threshold for LHC at 6.5 TeV with
in LHC at 6.5 TeV with V, = 10 MV* Vo =10 MV, pp = 2, ImZ /k = 0.076 Ohm
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— Calculations are consistent with observations for f,, ~ 5 GHz (cutoff of LHC beam pipe)

*E. Shaposhnikova et al, Loss of Landau damping in the LHC, 2011
J.F. Esteban Miiller, Longitudinal intensity effects in the CERN Large Hadron Collider, PhD, 2016
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Single-bunch instabilities



Instability of proton bunch in SPS

Uncontrolled emittance blowup during the acceleration of single bunches was observed

Bunch parameters after acceleration

from 26 to 450 GeV*

SPS impedance model (2018)***
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The simulation results (with code BLonD**) for the complicated impedance model were consistent
with the measured instability threshold*, however, the instability mechanism was not known

*A. Lasheen, Beam measurements of the longitudinal impedance of the CERN Super Proton Synchrotron, PhD, 2017
J. Repond, Possible mitigations of longitudinal intensity limitations for HL-LHC beam in the CERN SPS, PhD, 2019
**H, Timko et al, Beam Longitudinal Dynamics Simulation Suite BLonD, 2022

***CERN SPS Longitudinal Impedance Model, https:// gitlab.cern.ch/longitudinal-impedance/SPS
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Stability maps during acceleration

Calculations at flattop Calculations during ramp (4 - measurements)
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The island found in simulations at 450 GeV* is also present earlier in the acceleration cycle**
— Measured parameters of unstable bunches (4) are crossing the island

**M.Gadioux, Evaluation of longitudinal single-bunch stability in the SPS and bunch optimization for AWAKE, 2020
13



Unstable island

Calculations at flattop van Kampen modes
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— Radial mode-coupling instability** since there is no overlap of modes from different
azimuthal bands
— Coupling is present in many azimuthal modes simultaneously (microwave regime)

Particles per bunch, N, x10!!

*K. Oide and K. Yokoya, Longitudinal single bunch instability in electron storage rings, 1990



Role of rf nonlinearity

van Kampen mode for linear rf without
potential-well distortion (PWD)
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If PWD and rf nonlinearity are neglected, the instability threshold is 5 times higher (azimuthal mode-
coupling instability*) than for radial mode-coupling instability

In a self-consistent approach, a strong radial mode-coupling instability emerges at this intensity
— rf nonlinearity can significantly reduce the threshold

*F. J. Sacherer, Bunch lengthening and microwave instability, 1977
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Multi-bunch nstabilities



Instability due to narrowband impedance

Resonator impedance with Q = 100

[
)

Coupled-bunch mode [ of M equidistant bunches can be
driven by impedance with k,;, = [f,.,nb/foj =pM + 1

The threshold can be obtained from the Lebedev

I+ Aw

ReZ (arb. units)
= o
o ot

equation. If the resonator bandwidth Aw < Mw, and kyy,
Is far from M /2 harmonics*

M kr

2M 3M
Harmonics of revolution frequency, &

Example of unstable dipole mode

The coupled-bunch instability (CBI) threshold for the 1.000 - I t0.025
binomial distribution is the lowest for m = 1** 0.975 i L .020
i3 i -l 0,015 3
V0¢max nb : (1- 2)1 # YKnbPmax 3 090 :
Ncgr = min ]1 = | - 0.010 £
16ghwyMRy, velo1]l | u(u+ 1) h 0.925 - |
Bessel function 0.900 - : IO'OO5
|
— Unstable mode ().g; is inside the incoherent frequency band 0.5 10 15
N, /Ncai

*V. |. Balbekov and S. V. Ivanov, Longitudinal beam instability threshold beam in proton synchrotrons, 1986

**|K and E. Shaposhnikova, “Longitudinal coupled-bunch instability evaluation for FCC-hh, 2019
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Generalized threshold

Growth rates of most unstable

Typically, broadband (bb) and narrowband (nb) impedance modes for 9 bunches
sources are treated separately, except in a few examples (MELODY - lines, BLonD - crosses)
of CBI growth rate calculations* 0.03

— nb = nb + bb with f,./fs =5
Including them in the Lebedev equation simultaneously 024 1 1T 1

0.34 0.52 T

be .Q an .Q

Qg * QLLD and Q, # Qcp;

— Approximate threshold (first estimate)

1 1 N 1
Ng  Niwp  Negr _
— Instability develops below the LLD threshold 0.00.102030405060708091.011121314

Np/Ncpr
*M. Blaskiewicz, Longitudinal stability calculations, 2009, and recently in ’

A. Burov, Longitudinal modes of bunched beams with weak space charge, 2021 18



Multi-bunch instabilities In the SPS

Growth rates of most unstable modes for full ring

(5 ns bunch spacing)

n 20 7

8 y
@© .
2 10- Nyirp ;
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Particles per bunch N,

Instability of fixed-target beams (5 ns spacing) is
driven by Higher Order Mode (HOM) of 200 MHz rf

system at 914 MHz*

— LLD has no impact since N¢g; Is very low

x 1010

Growth rates of most unstable modes for LHC-

type trains (25 ns bunch spacing)
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— Instability of bunch trains is enhanced by LLD
(weak dependence on number of bunches)

— Stability is improved with an additional 800
MHz rf system and controlled emittance blowup

(LLD threshold is increased)**

*E. Shaposhnikova, Analysis of coupled bunch instability spectra, 1999
**| HC Injectors Upgrade, Technical Design Report, Vol. I: Protons, 2014



Expectations for HL-LHC

Coupled-bunch instabilities (CBI) driven by
higher-order modes (HOM) have not been
observed in the LHC so far

Bunch intensity for HL-LHC is doubled
compared to LHC, and crab cavities with
strongly damped HOMSs will be installed

— In the presence of BB impedance, the
Instability threshold is reduced below the
LLD threshold

— Precise BB impedance model (f;) is
necessary to predict stability margins

Particles per bunch, N,

nb - Ry, = 4 X 71 kOhm, f,. = 582 MHz
bb - (IMZ/k) s =~ 0.075 Ohm, f. =5 GHz

x 1011

—— HOM only
—— HOM + BB
—— LLD theshold

HL-LHC

1.15 1.20 1.25 1.30
Bunch length 7 (ns)

Instability thresholds at E = 450 GeV for V, = 8 MV
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Summary

Threshold for loss of Landau Damping (LLD) for binomial distribution:

- Is inversely proportional to cutoff frequency (vanishes for ImZ/k = const)

- has weaker dependence on the bunch length (4" instead of 51" power)

- can be evaluated for arbitrary impedance using effective-impedance parameters

Single bunch instability threshold:
- Is mainly determined by the radial mode-coupling mechanism
- can be reduced by rf nonlinearity

Multi-bunch instability threshold:
- Is defined by both broadband and narrowband impedance contributions
- can be below the LLD threshold

These findings are supported by numerical calculations and beam measurements

21
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Growth rate vs cutoff
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Beam stabllity at SPS flattop

Stability map based on simulations Stability map based on calculations
with code BLonD* with code MELODY
11 11
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An unstable island was observed in simulations at 450 GeV** and reproduced with MELODY

*H. Timko et al, Beam Longitudinal Dynamics Simulation Suite BLonD, 2022

**E. Radvilas, Simulations of single-bunch instability on flat top, 2015 >



Generalized threshold

Typically, broadband (bb) and narrowband (nb) impedance sources are treated separately,
except in a few analyses of CBI growth rates*

Including both bb and nb sources in the Lebedev equation simultaneously

- bb | nb 17
N Vo Z Gor (O )Zk (QrLp) L C @ )Zk (Qcpr)
g qha)o kk\*=LLD Ie KnbKknp \"“CBI knb
| k=—o00 . J
.Q.g + 'Q‘LLD and .Q.g + Q‘CBI # 0 only for k = kyy,
1 1 1
— Proposed approximate threshold — = + —

Ny Npip  Ncgi

*M. Blaskiewicz, Longitudinal stability calculations, 2009, and recently in

A. Burov, Longitudinal modes of bunched beams with weak space charge, 2021 .



LLD Iin macroparticle simulations

The matched bunch is tracked using code BLonD* for ~5000 synchrotron periods
FFT of mean position is computed for various bunch intensities

Broadband impedance f,. = 4 GHz Broadband impedance f, = 8 GHz
1.00 . 1.00 |
MELODY
0.99
3
~~
3 0.98
0.25 050 0.75 1.00 1.25 1.50 025 050 075 1.00 1.25 1.50
Particles per bunch N, x 1011 Particles per bunch NV, x 1011

— Numerical predictions are supported by macroparticle simulations
*H. Timko et al, Beam Longitudinal Dynamics Simulation Suite BLonD, 2022



Impact on beam

Rigid bunch perturbation is common for accelerators Residual amplitude evaluated with MELODY:
9 P LHC, 450 GeV, u = 2, broadband impedance

(phase error or noise) with R = 0.07f./f, Ohm, and @ = 1

<
o

— For N, > Ny p, the residual oscillation amplitude,
Ares, depends on intensity

<
3
1

<
e~
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— For N, = Nyip, Ares IS smaller for higher cutoff

| ]
|
|
I
|
I
|
|
: f. = 2.0 GHz
I

Normalized oscillation amplitude
o
w
1

frequency oo
0-21 — f.=4.0 GHz

— Obtaining Ny p and 4,5 in measurements, 0.1 - | = Jr= ?éooeé{;

(ImZ /k) ¢ and kg Can be probed (recently applied in . | | | = fr _. .0 GHz

PS* and SPS*¥) 0 1 i . !

Particles per bunch NV, x 10!

*L.Intelisano, H.Damerau, and IK, Measurements of longitudinal loss of Landau damping in the CERN Proton

Synchrotron, 2023

** |_.Intelisano, H.Damerau, and IK, Longitudinal loss of Landau damping in the CERN Super Proton Synchrotron at

200 GeV, 2023 28



Comparisons with LHC measurements

Different measurements have been performed since
2010*

The threshold was determined as an onset of slowly
growing oscillations

— Calculations for f,. = 5 GHz are consistent with
observations

— Revision of the LHC impedance model at high
frequencies is ongoing***

*E. Shaposhnikova et al, Loss of Landau damping in the LHC, 2011 \
**J.F. Esteban Miiller, Longitudinal intensity effects in the CERN Large Hadron Collider, 2016 2/1n2
***M. Zampetakis et al, Refining the LHC Longitudinal Impedance Model, THBP37
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Strong radial mode-coupling
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Nonmonotonicity

Synchrotron frequency distribution at
Instability threshold

- No PWD
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-
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Mixed mode-coupling instability

Once synchrotron frequency bands fully -
overlap, ‘mixed’ mode coupling instability P o
can emerge g ~ Mmed
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Azimuthal mode-coupling
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Ws/Wso

van Kampen mode spectra
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