

New understanding of longitudinal (bunched) beam instabilities and comparison with measurements

Ivan Karpov (CERN)

Acknowledgments:

Elena Shaposhnikova, Theodoros Argyropoulos, Alexandre Lasheen, Heiko Damerau (CERN) Alexey Burov (FNAL), Maxime Gadioux (UCD), Sigurd Nese (UiB)

68th ICFA ABDW on High-intensity and high-brightness hadron beams, 9-13 October 2023

Outline

- 1. Loss of Landau Damping
- 2. Single-bunch instabilities
- 3. Multi-bunch instabilities

I. Karpov, T. Argyropoulos, E. Shaposhnikova, Thresholds for loss of Landau damping in longitudinal plane, 2021

I. Karpov, Longitudinal mode-coupling instabilities of proton bunches in the CERN Super Proton Synchrotron, 2023

I. Karpov, E. Shaposhnikova, Generalized threshold of longitudinal multi-bunch instability in synchrotrons, 2023

Loss of Landau damping

Loss of Landau damping (LLD)

Long-lasting oscillations were observed in SPS, RHIC, Tevatron, LHC, ... Longitudinal particle oscillations can be described as van Kampen modes*

*Y. H. Chin, K. Satoh, and K. Yokoya, Instability of a bunched beam with synchrotron frequency spread, 1983, and A. Burov, Van Kampen modes for bunch longitudinal motion, 2010

Lebedev equation*

A system of equations for line-density harmonics $\tilde{\lambda}_k$ for coherent mode Ω

 \rightarrow The mode Ω is a solution if the determinant is zero, det $\mathcal{M} = 0$

 $k = \omega/\omega_0$ $N_p - \text{number of particles}$ q - charge $\omega_0 - \text{revolution frequency}$ $\omega_{rf} - \text{rf frequency}$ $V_0 - \text{rf voltage}$

*A. N. Lebedev, Coherent synchrotron oscillations in the presence of a space charge, 1968

Approximate analytic solution

 $\det \mathcal{M} = \det[I + \varepsilon X(\varepsilon)] = \det(\exp\{\ln[I + \varepsilon X(\varepsilon)]\}) = \exp(\operatorname{tr}\{\ln[I + \varepsilon X(\varepsilon)]\})$ $= 1 + \varepsilon \operatorname{tr}[X(0)] + \mathcal{O}(\varepsilon^2) \qquad \det(\exp A) = \exp(\operatorname{tr}A)$

The LLD threshold for dipole mode: $N_{\rm L}$

$$_{\rm LD} \approx \frac{V_0}{q\omega_{\rm rf}} \left[\sum_{k=-\infty}^{\infty} G_{kk}(\Omega) \frac{Z_k(\Omega)}{k} \right]^{-1}$$

Assuming:

- Reactive impedance $Z_k/k = i \text{Im}Z/k = \text{const.}$
- Beam above transition in single rf: $\Omega = \omega_s(0)$
- Short bunch approximation $\phi_{\rm m} = \omega_{\rm rf} \, \tau/2 \ll \pi$
- Binomial distribution $\lambda(\phi) \propto [1 \phi^2/\phi_m^2]^{\mu+1/2}$
- \rightarrow Elements G_{kk} saturate for $k \rightarrow \infty$
- \rightarrow LLD threshold is zero for commonly used inductive impedance ImZ/k = const

6

LLD threshold

One needs to introduce a cutoff frequency $f_c = k_c f_0$ and then

$$N_{\rm LLD} \approx \frac{\pi}{32qh\omega_{\rm rf}\mu(\mu+1)} \frac{V_0\phi_{\rm m}^5}{\chi_\mu(k_{\rm c}\phi_{\rm m}/h){\rm Im}Z/k}$$

For
$$f_c \to \infty$$
 $N_{\text{LLD}} \approx \frac{\pi}{32q\omega_{\text{rf}}\mu(\mu+1)} \frac{V_0 \phi_{\text{m}}^4}{k_c \text{Im}Z/k}$

so that $N_{\rm LLD} \propto 1/f_c$ and $\phi_{\rm m}^5 \rightarrow \phi_{\rm m}^4$

→ $N_{\rm LLD}$ based on Sacherer* and Hofmann-Pedersen** formalisms ($\mu = 0.5$) is reproduced for $f_c \approx 1/\tau$ ($k_c \phi_{\rm m} \approx \pi$)

*F.J. Sacherer, Methods for computing bunched-beam instabilities, 1972

**A. Hofmann and F. Pedersen, Bunches with local elliptic energy distributions, 1979

Function
$$\chi_{\mu}(y) = y \left[1 - {}_{2}F_{3}\left(\frac{1}{2}, \frac{1}{2}; \frac{3}{2}, 2, \mu; -y^{2}\right) \right]$$

7

LLD threshold: numerical approaches

(1) The Oide-Yokoya discretization method (O-Y)*: Originally applied for analysis of single-bunch instabilities and later for LLD studies**

(2) Direct solution of the Lebedev equation (L): recently implemented in code MELODY***

Example for LHC: 450 GeV, $\mu = 2$, truncated inductive impedance with ImZ/k = 0.07 Ohm

*K. Oide and K. Yokoya, Longitudinal single bunch instability in electron storage rings, 1990 **A. Burov, Van Kampen modes for bunch longitudinal motion, 2010 ***IK, Matrix Equations for LOngitudinal beam DYnamics

LLD for effective impedance

Since
$$N_{\text{LLD}} \approx \frac{V_0}{qh\omega_0} \left[\sum_{k=-\infty}^{\infty} G_{kk}(\Omega) \frac{Z_k(\Omega)}{k} \right]^{-1}$$

naturally $(\text{Im}Z/k)_{\text{eff}} = \frac{\sum_{k=1}^{k_{\text{eff}}} G_{kk} \text{Im}(Z_k/k)}{\sum_{k=1}^{k_{\text{eff}}} G_{kk}}$

where k_{eff} maximizes the nominator*

Broadband resonator with Q = 1, $f_r = 10 f_{rf}$

All work with $k_c \rightarrow k_{eff} \& \text{Im}Z/k \rightarrow (\text{Im}Z/k)_{eff}$

LHC, 450 GeV, $\mu = 2$, broadband impedance with $R = 0.07 f_r / f_0$ Ohm and Q = 1

*S. Nese, Effective impedance for the threshold of loss of Landau damping, 2021

Beam measurements of LLD

LLD was the first and only intensity effect observed in the LHC in the longitudinal plane*

 \rightarrow Calculations are consistent with observations for $f_r \approx 5$ GHz (cutoff of LHC beam pipe)

*E. Shaposhnikova et al, Loss of Landau damping in the LHC, 2011 J.F. Esteban Müller, Longitudinal intensity effects in the CERN Large Hadron Collider, PhD, 2016

Single-bunch instabilities

Instability of proton bunch in SPS

Uncontrolled emittance blowup during the acceleration of single bunches was observed

Bunch parameters after acceleration from 26 to 450 GeV*

The simulation results (with code BLonD**) for the complicated impedance model were consistent with the measured instability threshold*, however, the instability mechanism was not known

*A. Lasheen, Beam measurements of the longitudinal impedance of the CERN Super Proton Synchrotron, PhD, 2017 J. Repond, Possible mitigations of longitudinal intensity limitations for HL-LHC beam in the CERN SPS, PhD, 2019 **H. Timko et al, Beam Longitudinal Dynamics Simulation Suite BLonD, 2022 ***CERN SPS Longitudinal Impedance Model, https:// gitlab.cern.ch/longitudinal-impedance/SPS

Stability maps during acceleration

The island found in simulations at 450 GeV^{*} is also present earlier in the acceleration cycle^{**} \rightarrow Measured parameters of unstable bunches (+) are crossing the island

**M.Gadioux, Evaluation of longitudinal single-bunch stability in the SPS and bunch optimization for AWAKE, 2020

Unstable island

Calculations at flattop

van Kampen modes

 \rightarrow Radial mode-coupling instability** since there is no overlap of modes from different azimuthal bands

→ Coupling is present in many azimuthal modes simultaneously (microwave regime)

*K. Oide and K. Yokoya, Longitudinal single bunch instability in electron storage rings, 1990

Role of rf nonlinearity

If PWD and rf nonlinearity are neglected, the instability threshold is 5 times higher (azimuthal mode-coupling instability*) than for radial mode-coupling instability

In a self-consistent approach, a strong radial mode-coupling instability emerges at this intensity \rightarrow rf nonlinearity can significantly reduce the threshold

*F. J. Sacherer, Bunch lengthening and microwave instability, 1977

Multi-bunch instabilities

Instability due to narrowband impedance

Coupled-bunch mode *l* of *M* equidistant bunches can be driven by impedance with $k_{nb} = \lfloor f_{r,nb}/f_0 \rfloor = pM + l$

The threshold can be obtained from the Lebedev equation. If the resonator bandwidth $\Delta \omega \ll M \omega_0$ and $k_{\rm nb}$ is far from M/2 harmonics^{*}

The coupled-bunch instability (CBI) threshold for the binomial distribution is the lowest for $m = 1^{**}$

$$N_{\text{CBI}} \approx \frac{V_0 \phi_{\text{max}}^4 k_{\text{nb}}}{16qh\omega_0 M R_{\text{nb}}} \min_{y \in [0,1]} \left[\frac{(1-y^2)^{1-\mu}}{\mu(\mu+1)} J_1^{-2} \left(\frac{yk_{\text{nb}} \phi_{\text{max}}}{h} \right) \right]$$

Bessel function

 \rightarrow Unstable mode Ω_{CBI} is inside the incoherent frequency band

*V. I. Balbekov and S. V. Ivanov, Longitudinal beam instability threshold beam in proton synchrotrons, 1986 **IK and E. Shaposhnikova, "Longitudinal coupled-bunch instability evaluation for FCC-hh, 2019

Generalized threshold

Typically, broadband (bb) and narrowband (nb) impedance sources are treated separately, except in a few examples of CBI growth rate calculations*

Including them in the Lebedev equation simultaneously

$$\begin{split} N_{g}(\Omega_{g}) \approx & \frac{V_{0}}{q\omega_{\mathrm{rf}}} \bigg[\sum_{k=-\infty}^{\infty} G_{kk}(\Omega_{g}) \frac{Z_{k}^{\mathrm{bb}}(\Omega_{g}) + Z_{k}^{\mathrm{nb}}(\Omega_{g})}{k} \bigg]^{-1} \\ & \Omega_{g} \neq \Omega_{\mathrm{LLD}} \text{ and } \Omega_{g} \neq \Omega_{\mathrm{CBI}} \\ \rightarrow & \text{Approximate threshold (first estimate)} \\ & \frac{1}{N_{g}} \approx \frac{1}{N_{\mathrm{LLD}}} + \frac{1}{N_{\mathrm{CBI}}} \end{split}$$

 \rightarrow Instability develops below the LLD threshold

*M. Blaskiewicz, Longitudinal stability calculations, 2009, and recently in A. Burov, Longitudinal modes of bunched beams with weak space charge, 2021

Growth rates of most unstable modes for 9 bunches (MELODY - lines, BLonD - crosses)

Multi-bunch instabilities in the SPS

Growth rates of most unstable modes for full ring (5 ns bunch spacing)

Instability of fixed-target beams (5 ns spacing) is driven by Higher Order Mode (HOM) of 200 MHz rf system at 914 MHz*

 \rightarrow LLD has no impact since N_{CBI} is very low

*E. Shaposhnikova, Analysis of coupled bunch instability spectra, 1999 **LHC Injectors Upgrade, Technical Design Report, Vol. I: Protons, 2014

Growth rates of most unstable modes for LHCtype trains (25 ns bunch spacing)

 → Instability of bunch trains is enhanced by LLD (weak dependence on number of bunches)
 → Stability is improved with an additional 800 MHz rf system and controlled emittance blowup (LLD threshold is increased)**

Expectations for HL-LHC

Coupled-bunch instabilities (CBI) driven by higher-order modes (HOM) have not been observed in the LHC so far

Bunch intensity for HL-LHC is doubled compared to LHC, and crab cavities with strongly damped HOMs will be installed

 \rightarrow In the presence of BB impedance, the instability threshold is reduced below the LLD threshold

 \rightarrow Precise BB impedance model (f_c) is necessary to predict stability margins

Summary

Threshold for loss of Landau Damping (LLD) for binomial distribution:

- is inversely proportional to cutoff frequency (vanishes for ImZ/k = const)
- has weaker dependence on the bunch length (4th instead of 5th power)
- can be evaluated for arbitrary impedance using effective-impedance parameters

Single bunch instability threshold:

- is mainly determined by the radial mode-coupling mechanism
- can be reduced by rf nonlinearity

Multi-bunch instability threshold:

- is defined by both broadband and narrowband impedance contributions
- can be below the LLD threshold

These findings are supported by numerical calculations and beam measurements

Thank you for your attention!

Spare slides

Growth rate vs cutoff

Beam stability at SPS flattop

An unstable island was observed in simulations at 450 GeV** and reproduced with MELODY

*H. Timko et al, Beam Longitudinal Dynamics Simulation Suite BLonD, 2022 **E. Radvilas, Simulations of single-bunch instability on flat top, 2015

Generalized threshold

Typically, broadband (bb) and narrowband (nb) impedance sources are treated separately, except in a few analyses of CBI growth rates*

Including both bb and nb sources in the Lebedev equation simultaneously

$$N_{g} \approx \frac{V_{0}}{qh\omega_{0}} \left[\sum_{k=-\infty}^{\infty} G_{kk}(\Omega_{\text{LLD}}) \frac{Z_{k}^{\text{bb}}(\Omega_{\text{LLD}})}{k} + G_{k_{\text{nb}}k_{\text{nb}}}(\Omega_{\text{CBI}}) \frac{Z_{k}^{\text{nb}}(\Omega_{\text{CBI}})}{k_{\text{nb}}} \right]^{-1}$$

$$\Omega_{g} \neq \Omega_{\text{LLD}} \text{ and } \Omega_{g} \neq \Omega_{\text{CBI}} \qquad \neq 0 \text{ only for } k = k_{\text{nb}}$$

$$\Rightarrow \text{ Proposed approximate threshold} \quad \frac{1}{N_{g}} \approx \frac{1}{N_{\text{LLD}}} + \frac{1}{N_{\text{CBI}}}$$

*M. Blaskiewicz, Longitudinal stability calculations, 2009, and recently in A. Burov, Longitudinal modes of bunched beams with weak space charge, 2021

LLD in macroparticle simulations

The matched bunch is tracked using code BLonD* for ~5000 synchrotron periods FFT of mean position is computed for various bunch intensities

→ Numerical predictions are supported by macroparticle simulations *H. Timko et al, Beam Longitudinal Dynamics Simulation Suite BLonD, 2022

Impact on beam

Rigid bunch perturbation is common for accelerators (phase error or noise)

 \rightarrow For $N_p > N_{\text{LLD}}$, the residual oscillation amplitude, A_{res} , depends on intensity

 \rightarrow For $N_p = N_{\text{LLD}}$, A_{res} is smaller for higher cutoff frequency

→ Obtaining N_{LLD} and A_{res} in measurements, (ImZ/k)_{eff} and k_{eff} can be probed (recently applied in PS* and SPS**) Residual amplitude evaluated with MELODY: LHC, 450 GeV, $\mu = 2$, broadband impedance with $R = 0.07 f_r/f_0$ Ohm, and Q = 1

*L.Intelisano, H.Damerau, and IK, Measurements of longitudinal loss of Landau damping in the CERN Proton Synchrotron, 2023 ** L.Intelisano, H.Damerau, and IK, Longitudinal loss of Landau damping in the CERN Super Proton Synchrotron at 200 GeV, 2023

Comparisons with LHC measurements

Different measurements have been performed since 2010*

The threshold was determined as an onset of slowly growing oscillations

 \rightarrow Calculations for $f_r = 5$ GHz are consistent with observations

 \rightarrow Revision of the LHC impedance model at high frequencies is ongoing***

Residual oscillation amplitude computed with MELODY LHC at 6.5 TeV with $V_0 = 10 \text{ MV}, \mu = 2$

*E. Shaposhnikova et al, Loss of Landau damping in the LHC, 2011 **J.F. Esteban Müller, Longitudinal intensity effects in the CERN Large Hadron Collider, 2016 ***M. Zampetakis et al, Refining the LHC Longitudinal Impedance Model, THBP37

Strong radial mode-coupling

Nonmonotonicity

Mixed mode-coupling instability

Once synchrotron frequency bands fully overlap, 'mixed' mode coupling instability can emerge

Azimuthal mode-coupling

Azimuthal mode-coupling is possible in SPS for very short bunches (~1 ns). It is a coupling of LLD modes and can be suppressed by an increase in bunch intensity or a change in distribution

van Kampen mode spectra

 $C_m(\mathcal{E},\Omega) = \sqrt{-\omega_s(\mathcal{E})} rac{d\mathcal{F}(\mathcal{E})}{d\mathcal{E}} m rac{\omega_s(\mathcal{E})}{\omega_{-2}^2} ilde{C}_m(\mathcal{E},\Omega),$ Binomial mu = 2 $\tilde{C}_{m}(\mathcal{E},\Omega) = -\left\{ \mathbf{P} \frac{1}{\Omega^{2} - m^{2} \omega_{s}^{2}(\mathcal{E})} + \alpha(\mathcal{E},\Omega) \delta[\Omega^{2} - m^{2} \omega_{s}^{2}(\mathcal{E})] \right\}$ 1.00 $\times 2i\zeta\omega_{s0}^2\sum_{m}^{\infty}\sum_{m}^{\infty}\sum_{mm'}^{\infty}K_{mm'}^{nn'}(\Omega)a_{m'}^{n'}(\Omega)s_n^{(m)}(\mathcal{E}),$ - 3.0 0.99 m'=1 n=0 n'=0· 2.5 $ilde{\lambda}_k(\Omega) = rac{\omega_{s0}^2}{h} \sum_{k=1}^\infty \int_0^{\mathcal{E}_{\max}} rac{C_m(\mathcal{E},\Omega) I^*_{mk}(\mathcal{E})}{\omega_s(\mathcal{E})} d\mathcal{E}.$ 0.98 2.0 ^{0s}/ອ²⁰ ອ - 1.5 Single rf Single rf 0.60.60.96 - 1.0 0.4 $I_{mk}(\mathcal{E})/i^m$ $I_{mk}(\mathcal{E})/i^m$ 0.95 -0.2- 0.5 0.94 -0.20.0 -0.2m = 1, k/h = 2= 1, k/h = 120 10 30 40 50 0 m = 2, k/h = 2m = 2, k/h = 1k/h -0.40.0 **+** 0.0

0.5

0.0

1.0

2.0

1.5

0.5

1.0

۶

1.5

2.0

$$G_{k'k} = -i\omega_{s0}^2 \sum_{m=-\infty}^{\infty} m \int_0^{\mathcal{E}_{\max}} \frac{d\mathcal{F}(\mathcal{E})}{d\mathcal{E}} \frac{I_{mk}^*(\mathcal{E})I_{mk'}(\mathcal{E})}{\Omega - m\omega_s(\mathcal{E})} d\mathcal{E},$$

$$I_{mk}(\mathcal{E}) = \frac{1}{\pi} \int_0^{\pi} e^{i\frac{k}{h}\phi(\mathcal{E},\psi)} \cos m\psi \, d\psi.$$

. .