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Loss of Landau damping
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Loss of Landau damping (LLD)
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H. Timko et al, Beam instabilities after injection to the LHC, 2018  

Loss of

Landau damping

Dominant inductive impedance 

above transition 

Undamped mode

*Y. H. Chin, K. Satoh, and K. Yokoya, Instability of a bunched beam with synchrotron frequency spread, 1983, 

and A. Burov, Van Kampen modes for bunch longitudinal motion, 2010

Long-lasting oscillations were observed 

in SPS, RHIC, Tevatron, LHC, …

Longitudinal particle oscillations can 

be described as van Kampen modes*
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Lebedev equation*
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A system of equations for line-density harmonics ሚ𝜆𝑘 for coherent mode Ω

→ The mode Ω is a solution if the determinant is zero, detℳ = 0

𝑘 = 𝜔/𝜔0

𝑁𝑝 – number of particles 

𝑞 – charge

𝜔0 – revolution frequency

𝜔rf – rf frequency

𝑉0 – rf voltage

Beam and RF parameters

Beam transfer matrix

Impedance at 𝑘𝜔0 + Ω

*A. N. Lebedev, Coherent synchrotron oscillations in the presence of a space charge, 1968



Approximate analytic solution
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det exp𝐴 = exp tr𝐴

The LLD threshold for dipole mode:

Assuming:

• Reactive impedance 𝑍𝑘/𝑘 = 𝑖Im𝑍/𝑘 = const.

• Beam above transition in single rf: Ω = 𝜔𝑠 0

• Short bunch approximation 𝜙m = 𝜔rf 𝜏/2 ≪ 𝜋

• Binomial distribution 𝜆 𝜙 ∝ 1 − 𝜙2/𝜙m
2 𝜇+1/2

detℳ = det 𝐼 + 휀𝑋 휀 = det exp ln 𝐼 + 휀𝑋 휀 = exp tr ln 𝐼 + 휀𝑋 휀

= 1 + 휀 tr 𝑋 0 + 𝒪 휀2

𝑁LLD ≈
𝑉0
𝑞𝜔rf
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→ LLD threshold is zero for commonly used inductive impedance Im𝑍/𝑘 = const 

→ Elements 𝐺𝑘𝑘 saturate for 𝑘 → ∞

sum

sum



LLD threshold

7

One needs to introduce a cutoff frequency 

𝑓𝑐 = 𝑘c𝑓0 and then

𝑁LLD ≈
𝜋

32𝑞ℎ𝜔rf𝜇 𝜇 + 1

𝑉0𝜙m
5

𝜒𝜇 𝑘c𝜙m/ℎ Im𝑍/𝑘

→ 𝑁LLD based on Sacherer* and Hofmann-

Pedersen** formalisms (𝜇 = 0.5) is reproduced 

for 𝑓𝑐 ≈ 1/𝜏 (𝑘𝑐𝜙m ≈ 𝜋)

*F.J. Sacherer, Methods for computing bunched-beam instabilities, 1972 

**A. Hofmann and F. Pedersen, Bunches with local elliptic energy distributions, 1979

For 𝑓𝑐 → ∞ 𝑁LLD ≈
𝜋

32𝑞𝜔rf𝜇 𝜇 + 1

𝑉0𝜙m
4

𝑘cIm𝑍/𝑘

so that 𝑁LLD ∝ 1/𝑓𝑐 and 𝜙m
5 → 𝜙m

4

Function 𝜒𝜇 𝑦 = 𝑦 1 − 2𝐹3
1

2
,
1

2
;
3

2
, 2, 𝜇;−𝑦2



LLD threshold: numerical approaches
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*K. Oide and K. Yokoya, Longitudinal single bunch instability in electron storage rings, 1990

**A. Burov, Van Kampen modes for bunch longitudinal motion, 2010

***IK, Matrix Equations for LOngitudinal beam DYnamics

(1) The Oide-Yokoya discretization method (O-Y)*: Originally applied for analysis of single-bunch 

instabilities and later for LLD studies**

(2) Direct solution of the Lebedev equation (L): recently implemented in code MELODY***

Example for LHC:

450 GeV, 𝜇 = 2, 

truncated inductive 

impedance with 

Im𝑍/𝑘 = 0.07 Ohm



LLD for effective impedance
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𝑁LLD ≈
𝑉0

𝑞ℎ𝜔0
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Since

naturally Im𝑍/𝑘 eff =
σ𝑘=1
𝑘eff 𝐺𝑘𝑘Im(𝑍𝑘/𝑘)

σ
𝑘=1
𝑘eff 𝐺𝑘𝑘

where 𝑘eff maximizes the nominator*

Broadband resonator with 𝑄 = 1, 𝑓𝑟 = 10𝑓rf

*S. Nese, Effective impedance for the threshold of loss of Landau damping, 2021

LHC, 450 GeV, 𝜇 = 2, broadband impedance

with 𝑅 = 0.07𝑓𝑟/𝑓0 Ohm and 𝑄 = 1

All work with 𝑘𝑐 → 𝑘eff & Im𝑍/𝑘 → Im𝑍/𝑘 eff

𝜇 = 2, 𝜙m = 1



Beam measurements of LLD
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Measured parameters of bunches with LLD

in LHC at 6.5 TeV with 𝑉0 = 10 MV*

*E. Shaposhnikova et al, Loss of Landau damping in the LHC, 2011

J.F. Esteban Müller, Longitudinal intensity effects in the CERN Large Hadron Collider, PhD, 2016

→ Calculations are consistent with observations for 𝑓𝑟 ≈ 5 GHz (cutoff of LHC beam pipe) 

𝜏FWHM 2/ ln2

LLD was the first and only intensity effect observed in the LHC in the longitudinal plane*

LLD threshold for LHC at 6.5 TeV with 

𝑉0 = 10 MV, 𝜇 = 2, Im𝑍/𝑘 = 0.076 Ohm



Single-bunch instabilities
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Instability of proton bunch in SPS
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The simulation results (with code BLonD**) for the complicated impedance model were consistent 

with the measured instability threshold*, however, the instability mechanism was not known

*A. Lasheen, Beam measurements of the longitudinal impedance of the CERN Super Proton Synchrotron, PhD, 2017

J. Repond, Possible mitigations of longitudinal intensity limitations for HL-LHC beam in the CERN SPS, PhD, 2019

**H. Timko et al, Beam Longitudinal Dynamics Simulation Suite BLonD, 2022

***CERN SPS Longitudinal Impedance Model, https:// gitlab.cern.ch/longitudinal-impedance/SPS

SPS impedance model (2018)***
Bunch parameters after acceleration 

from 26 to 450 GeV*

Uncontrolled emittance blowup during the acceleration of single bunches was observed



Stability maps during acceleration
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The island found in simulations at 450 GeV* is also present earlier in the acceleration cycle**

→ Measured parameters of unstable bunches (✚) are crossing the island

**M.Gadioux, Evaluation of longitudinal single-bunch stability in the SPS and bunch optimization for AWAKE, 2020

Calculations at flattop Calculations during ramp (✚ - measurements)



Unstable island
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→ Radial mode-coupling instability** since there is no overlap of modes from different 

azimuthal bands

→ Coupling is present in many azimuthal modes simultaneously (microwave regime)

van Kampen modes

*K. Oide and K. Yokoya, Longitudinal single bunch instability in electron storage rings, 1990

Calculations at flattop



Role of rf nonlinearity
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van Kampen mode for linear rf without 

potential-well distortion (PWD)

*F. J. Sacherer, Bunch lengthening and microwave instability, 1977 

If PWD and rf nonlinearity are neglected, the instability threshold is 5 times higher (azimuthal mode-

coupling instability*) than for radial mode-coupling instability 

In a self-consistent approach, a strong radial mode-coupling instability emerges at this intensity

→ rf nonlinearity can significantly reduce the threshold

van Kampen modes



Multi-bunch instabilities

16



Instability due to narrowband impedance
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Coupled-bunch mode 𝑙 of 𝑀 equidistant bunches can be 

driven by impedance with 𝑘nb = 𝑓𝑟,nb/𝑓0 = 𝑝𝑀 + 𝑙

The threshold can be obtained from the Lebedev 

equation. If the resonator bandwidth Δ𝜔 ≪ 𝑀𝜔0 and 𝑘nb
is far from 𝑀/2 harmonics*

The coupled-bunch instability (CBI) threshold for the 

binomial distribution is the lowest for 𝑚 = 1**

Resonator impedance with 𝑄 = 100

Δ𝜔

*V. I. Balbekov and S. V. Ivanov, Longitudinal beam instability threshold beam in proton synchrotrons, 1986

**IK and E. Shaposhnikova, “Longitudinal coupled-bunch instability evaluation for FCC-hh, 2019

𝑁CBI ≈
𝑉0𝜙max

4 𝑘nb
16𝑞ℎ𝜔0𝑀𝑅nb

min
𝑦∈ 0,1

1 − 𝑦2 1−𝜇

𝜇 𝜇 + 1
𝐽1
−2

𝑦𝑘nb𝜙max

ℎ
Bessel function

Example of unstable dipole mode

→ Unstable mode ΩCBI is inside the incoherent frequency band



Generalized threshold
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Typically, broadband (bb) and narrowband (nb) impedance 

sources are treated separately, except in a few examples

of CBI growth rate calculations*

Including them in the Lebedev equation simultaneously

*M. Blaskiewicz, Longitudinal stability calculations, 2009, and recently in 

A. Burov, Longitudinal modes of bunched beams with weak space charge, 2021

𝑁𝑔(Ω𝑔) ≈
𝑉0
𝑞𝜔rf
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(MELODY - lines, BLonD - crosses)
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0.34
=

1

0.52
+
1

1

→ Instability develops below the LLD threshold



Multi-bunch instabilities in the SPS
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Instability of fixed-target beams (5 ns spacing) is 

driven by Higher Order Mode (HOM) of 200 MHz rf 

system at 914 MHz*

*E. Shaposhnikova, Analysis of coupled bunch instability spectra, 1999

**LHC Injectors Upgrade, Technical Design Report, Vol. I: Protons, 2014 

→ LLD has no impact since 𝑁CBI is very low

Growth rates of most unstable modes for full ring 

(5 ns bunch spacing)

→ Instability of bunch trains is enhanced by LLD 

(weak dependence on number of bunches)

→ Stability is improved with an additional 800 

MHz rf system and controlled emittance blowup 

(LLD threshold is increased)**

Growth rates of most unstable modes for LHC-

type trains (25 ns bunch spacing)

𝑁LLD

𝑁CBI

BLonD - crosses

𝑁LLD

𝑁CBI



Expectations for HL-LHC
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Coupled-bunch instabilities (CBI) driven by 

higher-order modes (HOM) have not been 

observed in the LHC so far

Bunch intensity for HL-LHC is doubled 

compared to LHC, and crab cavities with 

strongly damped HOMs will be installed 

→ In the presence of BB impedance, the 

instability threshold is reduced below the 

LLD threshold

→ Precise BB impedance model (𝑓𝑐) is 

necessary to predict stability margins

Instability thresholds at 𝐸 = 450 GeV for 𝑉0 = 8 MV: 

nb - 𝑅nb = 4 × 71 kOhm, 𝑓𝑟 = 582 MHz

bb - Im𝑍/𝑘 eff ≈ 0.075 Ohm, 𝑓𝑟 = 5 GHz



Summary
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Threshold for loss of Landau Damping (LLD) for binomial distribution:
- is inversely proportional to cutoff frequency (vanishes for Im𝑍/𝑘 = const)

- has weaker dependence on the bunch length (4th instead of 5th power)

- can be evaluated for arbitrary impedance using effective-impedance parameters

Single bunch instability threshold: 
- is mainly determined by the radial mode-coupling mechanism

- can be reduced by rf nonlinearity 

Multi-bunch instability threshold: 
- is defined by both broadband and narrowband impedance contributions

- can be below the LLD threshold

These findings are supported by numerical calculations and beam measurements
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Thank you for your attention!



Spare slides
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Growth rate vs cutoff
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Beam stability at SPS flattop
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An unstable island was observed in simulations at 450 GeV** and reproduced with MELODY

*H. Timko et al, Beam Longitudinal Dynamics Simulation Suite BLonD, 2022

**E. Radvilas, Simulations of single-bunch instability on flat top, 2015

Stability map based on calculations 

with code MELODY

Stability map based on simulations 

with code BLonD*



Generalized threshold

26

Typically, broadband (bb) and narrowband (nb) impedance sources are treated separately,

except in a few analyses of CBI growth rates*

Including both bb and nb sources in the Lebedev equation simultaneously

*M. Blaskiewicz, Longitudinal stability calculations, 2009, and recently in 

A. Burov, Longitudinal modes of bunched beams with weak space charge, 2021
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→ Proposed approximate threshold 



LLD in macroparticle simulations
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The matched bunch is tracked using code BLonD* for ∼5000 synchrotron periods

FFT of mean position is computed for various bunch intensities

*H. Timko et al, Beam Longitudinal Dynamics Simulation Suite BLonD, 2022

→ Numerical predictions are supported by macroparticle simulations

Broadband impedance 𝑓𝑟 = 4 GHz Broadband impedance 𝑓𝑟 = 8 GHz

MELODY MELODY



Impact on beam
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Rigid bunch perturbation is common for accelerators 

(phase error or noise)

→ For 𝑁𝑝 > 𝑁LLD, the residual oscillation amplitude, 

𝐴res, depends on intensity

→ For 𝑁𝑝 = 𝑁LLD, 𝐴𝑟𝑒𝑠 is smaller for higher cutoff 

frequency

→ Obtaining 𝑁LLD and 𝐴res in measurements, 

Im𝑍/𝑘 eff and 𝑘eff can be probed (recently applied in 

PS* and SPS**)

Bunch offset evolution evaluated with MELODY:

LHC, 450 GeV, 𝜇 = 2, broadband impedance

with 𝑅 = 0.07𝑓𝑟/𝑓0 Ohm, 𝑄 = 1, and 𝑓𝑟 = 4 GHz

Residual amplitude evaluated with MELODY:

LHC, 450 GeV, 𝜇 = 2, broadband impedance

with 𝑅 = 0.07𝑓𝑟/𝑓0 Ohm, and 𝑄 = 1

*L.Intelisano, H.Damerau, and IK, Measurements of longitudinal loss of Landau damping in the CERN Proton 

Synchrotron, 2023

** L.Intelisano, H.Damerau, and IK, Longitudinal loss of Landau damping in the CERN Super Proton Synchrotron at 

200 GeV, 2023



Comparisons with LHC measurements
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*E. Shaposhnikova et al, Loss of Landau damping in the LHC, 2011

**J.F. Esteban Müller, Longitudinal intensity effects in the CERN Large Hadron Collider, 2016

***M. Zampetakis et al, Refining the LHC Longitudinal Impedance Model, THBP37

Different measurements have been performed since 

2010*

The threshold was determined as an onset of slowly 

growing oscillations

→ Calculations for 𝑓𝑟 = 5 GHz are consistent with 

observations

→ Revision of the LHC impedance model at high 

frequencies is ongoing***

Residual oscillation amplitude 

computed with MELODY LHC at 

6.5 TeV with 𝑉0 = 10 MV, 𝜇 = 2

𝜏FWHM 2/ ln 2



Strong radial mode-coupling
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Nonmonotonicity 
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Synchrotron frequency distribution at 

instability threshold

Linear rf

Nonlinear rf



Mixed mode-coupling instability
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Once synchrotron frequency bands fully 

overlap, ‘mixed’ mode coupling instability 

can emerge



Azimuthal mode-coupling
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Azimuthal mode-coupling is possible in 

SPS for very short bunches (~1 ns). It 

is a coupling of LLD modes and can be 

suppressed by an increase in bunch 

intensity or a change in distribution 



van Kampen mode spectra
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Binomial mu = 2
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